- 신장 트리(Spanning Tree): 하나의 그래프가 있을 때 모든 노드를 포함하면서 사이클이 존재하지 않는 부분 그래프
- 최소 신장 트리 알고리즘: 최소한의 비용으로 신장 트리를 찾는 알고리즘
- 클루스칼 알고리즘(Kruskal Algorithm): 대표적인 최소 신장 트리 알고리즘
클루스칼 알고리즘
- 간선 데이터를 비용에 따라 오름차순으로 정렬한다
- 간선을 하나씩 확인하며 현재의 간선이 사이클을 발생시키는지 확인한다.
- 사이클이 발생하지 않는 경우 최소 신장 트리에 포함시킨다.
- 사이클이 발생하는 경우 최소 신장 트리에 포함시키지 않는다.
- 모든 간선에 대해 2번의 과정을 반복한다.
def find_parent(parent, x):
if parent[x] != x:
parent[x] = find_parent(parent, parent[x])
return parent[x]
def union_parent(parent, a, b):
a = find_parent(parent, a)
b = find_parent(parent, b)
if a < b:
parent[b] = a
else:
parent[a] = b
# 노드의 개수, 간선의 개수
v, e = map(int, input().split())
parent = [0] * (v+1)
edges = []
result = 0
for i in range(1, v+1):
parent[i] = i
for _ in range(e):
a, b, cost = map(int, input().split())
# 비용순으로 정렬하기 위해 튜플의 첫번째 원소를 비용으로 설정
edges.append((cost, a, b))
edges.sort()
for edge in edges:
cost, a, b = edge
# 사이클이 발생하지 않는 경우에만 집합에 포함
if find_parent(parent, a) != find_parent(parent, b):
union_parent(parent, a, b)
result += cost
print(result)