Conditional Probability (조건부확률)
P(EF)
=P(E)
와P(F)
의교집합
Conditional Probability - Example
P(M|U)
=P(MU)
/P(U)
P(U)
= 300/900
P(MU)
= 40/900
P(M|U)
= 40/300 = 2/15
P(S|R)
=P(SR)
/P(R)
P(U)
= 36/150
P(MU)
= 96/150
P(M|U)
= 3/8
P(D|R)
= 1 -P(S|R)
= 5/8
B
:Both heads
: {(h,h)
}
F
:First heads
: {(h,h)
,(h,t)
}
A
:at least on head
: {(h,h)
,(h,t)
,(t,h)
}
P(FA)
=P(F)
XP(A|F)
=1/2 X 1/2 = 1/4
Multiplicative Rules in Probability
P(A|B)
=P(AB)/P(B)
P(B|A)
=P(AB)/P(A)
Baye's Rule(베이즈 룰)
Law of Total Probability(전확률 법칙)
A1
,A2
,A3
->mutually exculsive
P(A1 | B)
(정보)
P(A1)
*
P(S1)
= 0.4,P(S2)
= 0.6
P(D|S1)
= 0.1,P(D|S2)
= 0.05
P(S1|D)
=P(S1D)
/P(D)
=P(S1D)
/{P(S1D) + P(S2D)}
=P(S1)
XP(D|S1)
/{P(S1) X P(D|S1) + P(S2) X P(D|S2)}
=0.4 X 0.1
/0.4 X 0.1 + 0.6 X 0.05
=0.57
What is the probability that he was taught by Method A
P(A)
= 0.7P(B)
= 0.3
P(F|A)
= 0.2,P(F|B)
= 0.1
P(A|F)
=P(AF)
/P(F)
=P(AF)
/P(AF) + P(BF)
=p(A)
XP(F|A)
/P(A)
XP(F|A)
+P(B)
XP(F|B)
=0.7 X 0.2
/0.7 X 0.2
+0.3 X 0.1
= 0.82
criminal investigation
= 범행조사
P(G)
= 0.6,P(~G)
= 0.4
P(C|G)
= 1P(C|~G)
= 0.2
P(G|C)
=p(GC)
/P(C)
=P(C|G)
XP(G)
=P(C|G)
XP(G)
+P(C|~G)P(~G)
=0.882
Odds (아즈, 오즈)
Hence, the odds are 2/3, or, equivalently, the probability is 2/5 that a type A coin was flipped
urn
=항아리
P(A|H)
=P(A) X P(H|A)
/P(H)
P(B|H)
=P(B) X P(H|B)
/P(H)
P(A|H)
/P(B|H)
P(A)
= 2/3
P(B)
= 1/3
P(H|A)
= 1/4
P(H|B)
= 3/4
P(A|H)
/ 1-P(A|H)
->P(A|H)
= 2/5
[핵심 확률/통계] = 조건부 확률(Conditional Probability) 강의 자료 슬라이드 참조