
Conditional Probability (조건부확률)
P(EF)=P(E)와P(F)의교집합

Conditional Probability - Example
P(M|U)=P(MU)/P(U)
P(U)= 300/900
P(MU)= 40/900
P(M|U)= 40/300 = 2/15

P(S|R)=P(SR)/P(R)
P(U)= 36/150
P(MU)= 96/150
P(M|U)= 3/8
P(D|R)= 1 -P(S|R)= 5/8

B:Both heads: {(h,h)}
F:First heads: {(h,h),(h,t)}
A:at least on head: {(h,h),(h,t),(t,h)}

P(FA)=P(F)XP(A|F)
=1/2 X 1/2 = 1/4
Multiplicative Rules in Probability
P(A|B)=P(AB)/P(B)
P(B|A)=P(AB)/P(A)
Baye's Rule(베이즈 룰)
Law of Total Probability(전확률 법칙)

A1,A2,A3->mutually exculsive


P(A1 | B)(정보)P(A1)*


P(S1)= 0.4,P(S2)= 0.6
P(D|S1)= 0.1,P(D|S2)= 0.05
P(S1|D)=P(S1D)/P(D)
=P(S1D)/{P(S1D) + P(S2D)}
=P(S1)XP(D|S1)/{P(S1) X P(D|S1) + P(S2) X P(D|S2)}
=0.4 X 0.1/0.4 X 0.1 + 0.6 X 0.05
=0.57

What is the probability that he was taught by Method A
P(A)= 0.7P(B)= 0.3
P(F|A)= 0.2,P(F|B)= 0.1
P(A|F)=P(AF)/P(F)
=P(AF)/P(AF) + P(BF)
=p(A)XP(F|A)/P(A)XP(F|A)+P(B)XP(F|B)
=0.7 X 0.2/0.7 X 0.2+0.3 X 0.1
= 0.82

criminal investigation= 범행조사
P(G)= 0.6,P(~G)= 0.4
P(C|G)= 1P(C|~G)= 0.2
P(G|C)=p(GC)/P(C)
=P(C|G)XP(G)=P(C|G)XP(G)+P(C|~G)P(~G)
=0.882

Odds (아즈, 오즈)




Hence, the odds are 2/3, or, equivalently, the probability is 2/5 that a type A coin was flipped
urn=항아리
P(A|H)=P(A) X P(H|A)/P(H)
P(B|H)=P(B) X P(H|B)/P(H)
P(A|H)/P(B|H)
P(A)= 2/3
P(B)= 1/3
P(H|A)= 1/4
P(H|B)= 3/4
P(A|H)/ 1-P(A|H)->P(A|H)= 2/5
[핵심 확률/통계] = 조건부 확률(Conditional Probability) 강의 자료 슬라이드 참조