import tensorflow as tf
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
tf.__version__
2.8.2
(train_data, train_labels), (test_data, test_labels) = \
tf.keras.datasets.cifar10.load_data()
train_data, valid_data, train_labels, valid_labels = \
train_test_split(train_data, train_labels, test_size=0.1, shuffle=True)
train_data.shape
train_data = train_data / 255.
train_data = train_data.reshape([-1, 32, 32, 3])
train_data = train_data.astype(np.float32)
train_labels = train_labels.reshape([-1])
train_labels = train_labels.astype(np.int32)
valid_data = valid_data / 255.
valid_data = valid_data.astype(np.float32)
valid_labels = valid_labels.reshape([-1])
valid_labels = valid_labels.astype(np.int32)
test_data = test_data / 255.
test_data = test_data.astype(np.float32)
test_labels = test_labels.reshape([-1])
test_labels = test_labels.astype(np.int32)
print(train_data.shape, train_labels.shape)
def one_hot_label(image, label):
label = tf.one_hot(label, depth=10)
return image, label
batch_size = 32
max_epochs = 100
N = len(train_data)
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
train_dataset = train_dataset.shuffle(buffer_size=10000)
train_dataset = train_dataset.map(one_hot_label)
train_dataset = train_dataset.repeat().batch(batch_size=batch_size)
print(train_dataset)
index = 655
print("label = {}".format(train_labels[index]))
plt.imshow(train_data[index].reshape(32, 32, 3))
plt.colorbar()
plt.show()
MODELS
- Input [b, 32, 32, 3]
- Conv2D 32, 3 -> Conv-Conv-Pool
- Conv2D 64, 3 -> Conv-Conv-Pool
- Conv2D 128, 3 -> Conv-Conv-Pool
- Dense 128
- Dense 64
- Dense 32
- output layers
inputs = layers.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, strides=1, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(32, 3, strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x_skip = layers.MaxPool2D()(x)
print(x_skip.shape)
x = layers.Conv2D(64, 3, strides=1, padding='same')(x_skip)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, 3, strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = tf.concat([x, x_skip], -1)
x = layers.Activation('relu')(x)
x = layers.MaxPool2D()(x)
outputs = layers.Dense(10)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
predictions = model(train_data[0:1], training=False)
print("Predictions: ", predictions.numpy())
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
history = model.fit(train_dataset,
steps_per_epoch=train_data.shape[0] / batch_size,
epochs=max_epochs,
validation_data=valid_dataset,
validation_steps=valid_data.shape[0] / batch_size)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(max_epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Valid Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Valid Loss')
plt.show()
results = model.evaluate(test_dataset, steps=len(test_data) // batch_size)
print("loss value: {:.3f}".format(results[0]))
print("accuracy value: {:.4f}%".format(results[1]*100))
test_batch_size = 16
batch_index = np.random.choice(len(test_data), size=test_batch_size, replace=False)
batch_xs = test_data[batch_index]
batch_ys = test_labels[batch_index]
y_pred_ = model(batch_xs, training=False)
fig = plt.figure(figsize=(16, 10))
for i, (px, py) in enumerate(zip(batch_xs, y_pred_)):
p = fig.add_subplot(4, 8, i+1)
if np.argmax(py) == batch_ys[i]:
p.set_title("y_pred: {}".format(np.argmax(py)), color='blue')
else:
p.set_title("y_pred: {}".format(np.argmax(py)), color='red')
p.imshow(px.reshape(32, 32, 3))
p.axis('off')