import tensorflow as tf
from tensorflow.keras import layers
from IPython.display import clear_output
from sklearn.model_selection import train_test_split
import time
import numpy as np
import matplotlib.pyplot as plt
tf.__version__
# Load training and eval data from tf.keras
(train_data, train_labels), (test_data, test_labels) = \
tf.keras.datasets.fashion_mnist.load_data()
train_data, valid_data, train_labels, valid_labels = \
train_test_split(train_data, train_labels, test_size=0.1, shuffle=True)
train_data = train_data / 255.
train_data = train_data.reshape(# TODO)
train_data = train_data.astype(np.float32)
train_labels = train_labels.astype(np.int32)
test_data = test_data / 255.
test_data = test_data.reshape(# TODO)
test_data = test_data.astype(np.float32)
test_labels = test_labels.astype(np.int32)
valid_data = valid_data / 255.
valid_data = valid_data.reshape(# TODO)
valid_data = valid_data.astype(np.float32)
valid_labels = valid_labels.astype(np.int32)
print(train_data.shape, train_labels.shape)
print(test_data.shape, test_labels.shape)
print(valid_data.shape, valid_labels.shape)
def one_hot_label(image, label):
label = tf.one_hot(label, depth=# TODO)
return image, label
batch_size = # TODO
max_epochs = # TODO
# for train
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
train_dataset = train_dataset.map(one_hot_label)
train_dataset = train_dataset.batch(batch_size=batch_size)
print(train_dataset)
# for test
test_dataset = tf.data.Dataset.from_tensor_slices((test_data, test_labels))
test_dataset = test_dataset.map(one_hot_label)
test_dataset = test_dataset.batch(batch_size=batch_size)
print(test_dataset)
# for test
valid_dataset = tf.data.Dataset.from_tensor_slices((valid_data, valid_labels))
valid_dataset = valid_dataset.map(one_hot_label)
valid_dataset = valid_dataset.batch(batch_size=batch_size)
print(valid_dataset)
모델 구성
model = tf.keras.Sequential()
# TODO
model.add(layers.Dense(units=10, activation = 'softmax'))
# without training, just inference a model in eager execution:
for images, labels in train_dataset.take(1):
predictions = model(images[0:1], training=False)
print("Predictions: ", predictions.numpy())
model.summary()
# use Adam optimizer
optimizer = tf.keras.optimizers.Adam(1e-4)
loss_object = tf.keras.losses.CategoricalCrossentropy()
acc_object = tf.keras.metrics.CategoricalAccuracy()
# record loss and accuracy for every epoch
mean_loss = tf.keras.metrics.Mean("loss")
mean_accuracy = tf.keras.metrics.Mean("accuracy")
# save loss and accuracy history for plot
loss_history = []
accuracy_history = [(0, 0.0)]
val_loss_history = []
val_accuracy_history = [(0, 0.0)]
def validation(global_step):
val_acc_object = tf.keras.metrics.CategoricalAccuracy()
val_mean_loss = tf.keras.metrics.Mean("loss")
val_mean_accuracy = tf.keras.metrics.Mean("accuracy")
for images, labels in valid_dataset:
predictions = model(images, training=False)
val_loss_value = loss_object(labels, predictions)
val_acc_value = val_acc_object(labels, predictions)
val_mean_loss(val_loss_value)
val_mean_accuracy(val_acc_value)
print("valid loss: {:.4g}, valid accuracy: {:.4g}%".format(val_mean_loss.result(),
val_mean_accuracy.result() * 100))
val_loss_history.append((global_step.numpy(), val_mean_loss.result().numpy()))
val_accuracy_history.append((global_step.numpy(), val_mean_accuracy.result().numpy()))
print("start training!")
global_step = tf.Variable(0, trainable=False)
validation(global_step)
num_batches_per_epoch = int(len(train_data) / batch_size)
for epoch in range(max_epochs):
for step, (images, labels) in enumerate(train_dataset):
start_time = time.time()
with tf.GradientTape() as tape:
predictions = model(images, training=True)
loss_value = loss_object(labels, predictions)
acc_value = acc_object(labels, predictions)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
global_step.assign_add(1)
mean_loss(loss_value)
mean_accuracy(acc_value)
loss_history.append((global_step.numpy(), mean_loss.result().numpy()))
if global_step.numpy() % 10 == 0:
clear_output(wait=True)
epochs = epoch + step / float(num_batches_per_epoch)
duration = time.time() - start_time
examples_per_sec = batch_size / float(duration)
print("epochs: {:.2f}, step: {}, loss: {:.3g}, accuracy: {:.4g}% ({:.2f} examples/sec; {:.4f} sec/batch)".format(
epochs, global_step.numpy(), loss_value.numpy(), acc_value.numpy()*100, examples_per_sec, duration))
# save mean accuracy for plot
accuracy_history.append((global_step.numpy(), mean_accuracy.result().numpy()))
validation(global_step)
# clear the history
mean_accuracy.reset_states()
print("training done!")
plt.plot(*zip(*loss_history), label='loss')
plt.plot(*zip(*val_loss_history), label='val_loss')
plt.xlabel('Number of steps')
plt.ylabel('Loss value [cross entropy]')
plt.legend()
plt.show()
plt.plot(*zip(*accuracy_history), label='accuracy')
plt.plot(*zip(*val_accuracy_history), label='val_accuracy')
plt.xlabel('Number of steps')
plt.ylabel('Accuracy value')
plt.legend()
plt.show()
acc_object.reset_states()
for images, labels in test_dataset:
predictions = model(images, training=False)
acc_object(labels, predictions)
print("test accuracy: {:.4g}%".format(acc_object.result() * 100))
np.random.seed(219)
test_batch_size = 16
batch_index = np.random.choice(len(test_data), size=test_batch_size, replace=False)
batch_xs = test_data[batch_index]
batch_ys = test_labels[batch_index]
y_pred_ = model(batch_xs, training=False)
fig = plt.figure(figsize=(16, 10))
for i, (px, py) in enumerate(zip(batch_xs, y_pred_)):
p = fig.add_subplot(4, 8, i+1)
if np.argmax(py) == batch_ys[i]:
p.set_title("y_pred: {}".format(np.argmax(py)), color='blue')
else:
p.set_title("y_pred: {}".format(np.argmax(py)), color='red')
p.imshow(px.reshape(28, 28))
p.axis('off')