[P&R] 02. Random Variable(1)

Bumjin Kim·2023년 10월 2일
0

확률변수론

목록 보기
3/5
post-thumbnail

🪄 Definition

  • A random variable X(u)X(u) is a mapping from the sample space to the real line.
    In other words, an assginment of a number to every possible outcomes.

    X(u):URX(u) : U \rightarrow R

⭐ We can have several random variables defined on the same sample space

     - Discrete RV

X(fi)=10i,X(f_i) = 10i, in die experiment
X{10,20,30,40,50,60}X \in \{10, 20, 30, 40, 50, 60\} ~ Discrete RV

  • case1case1 f2=f3=20f_2 = f_3 = 20 is okay.
  • case2case2 f2=20,f2=30f_2 = 20, f_2 = 30 is not function.

     - Continuous RV

U=(0,12],U = (0, 12 ], X(u)=u2,X(u) = u^2, X(0,144]X \in (0, 144] ~ Continuous RV


■ Probability Mass Function a.k.a. PMF

  • X(u)X(u) \rightarrow When we define the RV, describe what kind of experiment it was.
    In PMF, we describe the RV, all we have to give is Probability.

    PX(x)=P{X=x},P_X(x) = P\{X = x\}, each of elements have probability

    • X:X : Random Variable
    • x:x : Any number of set

  • Example of Binomial random variable
         • XX ~ Number of head in n independent coin tosses

    PX(x)=P_X(x) = (nx)n \choose x×px×pnx\times p^x \times p^{n-x} ~ Binomial PMF

  • Example of Geometric random variable
         • XX ~ Number of coin tosses until the fist head

    PX(x)=(1p)x1×pP_X(x) = (1-p)^{x-1} \times p

📙Note

  • PX(x)0P_X(x) \ge 0
  • i=xPX(x)=1\sum_{i=x} P_X(x) = 1

■ Probability Density Function a.k.a. PDF

  • A continuous RV XX is described by a probability density function, fX(x)f_X(x)
    • \int\limits_{-\infty}^\infinfX(x)f_X(x) dx=1dx = 1
    • ba\int\limits_{b}^afX(x)f_X(x) dx=P[axb]dx = P[a \le x \le b]
    • P(XB)=Bfx(x)P(X \in B) = \int\limits_Bf_x(x) dxdx
    • P(XXx+δ)=xx+δfX(x)P(X \le X \le x + \delta) = \int\limits_x^{x+ \delta}f_X(x) dxdx
      If δ\delta is very small, δ=0\delta = 0 \rightarrow P(X=x)P(X=x)

■ Probability Distribution Function (Cumulative Distribution Function, a.k.a. CDF)

FX(x)=P[Xx]=xfX(θ)F_X(x) = P[X \le x] = \int\limits_{-\infin}^x f_X(\theta) dθfX(x)=ddxFx(x)d\theta \\f_X(x) = \frac{d}{dx}F_x(x) \rightarrow Find to the density function using the CDF


■ Properties of Probability Distribution Function

  1. FX()=P[X]=1F_X(\infin) = P[X \le \infin] = 1
    FX()=P[X]=0F_X(-\infin) = P[X \le -\infin] = 0
  2. FX(x)F_X(x) is a non-decreasig function of xx
    In other words, if x1<x2,x_1 < x_2, then FX(x1)FX(x2)F_X(x_1) \le F_X(x_2)
  3. P[X>x]=1FX(x)P[X >x] = 1 - F_X(x)
  4. FX(x)F_X(x) is right-continuous
  5. P[x1<Xx2]=FX(x2)FX(x1)P[x_1 < X \le x_2] = F_X(x_2) - F_X(x_1)
    1. Proof ) {Xx2}={x1<Xx2}{Xx1}\\ \{X \le x_2 \} = \{x_1 < X \le x_2\} \bigcup \{X \le x_1\} P{Xx2}=P{x1<Xx2}+P{Xx1}\\P\{X \le x_2\} = P\{x_1 < X \le x_2\} +P\{X \le x_1\} (∵ 상호배반) FX(x2)=P{x1<Xx2}+FX(x1)\\F_X(x_2) = P\{x_1 < X \le x_2\} + F_X(x_1) P[x1<Xx2]=FX(x2)FX(x1)\\∴ P[x_1 < X \le x_2] = F_X(x_2) - F_X(x_1)

  6. P[X=x]=P[x<Xx]=FX(x)FX(x)P[X=x] = P[x^- < X \le x] = F_X(x) - F_X(x^-)

✏️ Example

Question. What is the FX(x)=F_X(x) = ??

According to the definition, FX(x)=xfx(θ)F_X(x) = \int\limits_{-\infin}^x f_x(\theta) dθd\theta
Then,

  • x<1Fx(x)=0x < 1 \rightarrow F_x(x) = 0
  • 1x<2Fx(x)=1x(θ1)1 \le x < 2 \rightarrow F_x(x) = \int\limits_1^x (\theta-1) dθ=x22x+12d\theta = \frac{x^2}{2} - x + \frac{1}{2}
  • 2x<3FX(x)=12+2x(3θ)2 \le x < 3 \rightarrow F_X(x) = \frac{1}{2} + \int\limits_2^x(3-\theta) dθ=x22+3x72d\theta = \frac{-x^2}{2} + 3x - \frac{7}{2}
  • x3FX(x)=1x \ge 3 \rightarrow F_X(x) = 1

■ Typical Density Function

  • Q(x)=1G(x)Q(x) = 1 - G(x)

✏️ Example

  • Let's suppose that XX ~ (3,22)(-3, 2^2)
    P[X+3<2]=P{5X1}P[|X + 3| < 2] = P\{-5 \le X \le -1\}
    FX(1)FX(5)G(1+32)G(5+32)G(1)G(1)G(1)(1G(1))2×G(1)112×Q(1)\Leftrightarrow F_X(-1)-F_X(-5) \\ \Leftrightarrow G(\frac{-1 + 3}{2}) - G(\frac{-5+3}{2}) \\ \Leftrightarrow G(1) - G(-1) \\ \Leftrightarrow G(1) - (1-G(1)) \\ \Leftrightarrow 2 \times G(1) - 1 \\ ∴ 1 - 2 \times Q(1)

■ Exponential

fX(x)f_X(x) of Exponential

  • λ×eλx,\lambda \times e^{-\lambda x}, x0x \ge 0
  • 0,0, otherwise

    FX(x)=0xλeλθF_X(x) = \int\limits_0^x \lambda e^{-\lambda\theta} dθd\theta
            =[eλθ]0x= [-e^{-\lambda\theta}]_0^x
            =1eλx,= 1 - e^{\lambda x}, x0x \ge 0

■ Poisson

  • PX(k)=P_X(k) = (nk)n \choose k×pk×qnk,\times p^k \times q^{n-k}, At that time (p=τT,q=1τT)\big( p = \frac{\tau}{T}, q = 1 - \frac{\tau}{T}\big)
  • Assume T,T \rightarrow \infin, n,n \rightarrow \infin, while n/Tλn/T \rightarrow \lambda
    (n/Tn/T means that "expected number of points in length 1")
  • PX(k)eλτ×(λτ)kk!P_X(k) ≃ e^{-\lambda \tau \times \frac{(\lambda \tau)^k}{k!} } ~ Poission RV

🪄 Question : What is the density of distance between adjacent points?

FY(y)=P[Yy]F_Y(y) = P[Y \le y]
P[Y>y]=P{\Leftrightarrow P[Y > y] = P\{ No Point in Interval with Length y }\}
1FY(y)=eλy\Leftrightarrow 1-F_Y(y) = e^{-\lambda y}
FY(y)=1eλy\Leftrightarrow F_Y(y) = 1 - e^{-\lambda y}
fY(y)=λ×eλy,∴ f_Y(y) = \lambda\times e^{-\lambda y}, y0y \ge 0


본 글은 HGU 2023-2 확률변수론 이준용 교수님의 수업 필기 내용을 요약한 글입니다.
profile
코딩 꿈나무

0개의 댓글

관련 채용 정보