등차수열(arithmetic sequence), 등비수열(geometric sequence)

Bryant·2025년 10월 23일
0

수학

목록 보기
8/8

등차수열

an=a1+(n1)dSn=a1+a2+...+(a1+(n1)d)a_n = a_1 +(n-1)d \\S_n= a_1+a_2+...+(a_1+(n-1)d)

역순끼리 더하면

Sn=a1+(a2+d)+...+(a1+(n1)d)Sn=(a1+(n1)d)+(a1+(n2)d)+...+a12Sn=(2a1+(n1)d)+(2a1+(n1)d)+...2Sn=n(2a1+(n1)dSn=n2(2a1+(n1)d)S_n= a_1+(a_2+d)+...+(a_1+(n-1)d) \\S_n= (a_1+(n-1)d)+(a_1+(n-2)d) +... +a_1 \\2S_n = (2a_1+(n-1)d)+(2a_1+(n-1)d)+... \\2S_n = n(2a_1+(n-1)d \\S_n = \frac{n}{2}(2a_1+(n-1)d)
an=a1+(n1)d 이므로,Sn=n2(a1+an)도 표현가능a_n = a_1+(n-1)d~이므로, \\S_n = \frac{n}{2}(a_1+a_n)도 ~표현 가능

등비수열

an=a1rn1Sn=a1+a1r+a1r2+...+a1rn1rSn=a1r+a1r2+a1r3+...+a1rn(1r)Sn=a1a1rn=a1(1rn)Sn=a11rn1ra_n = a_1r^{n-1} \\S_n = a_1+a_1r+a_1r^2+...+a_1r^{n-1} \\rS_n = a_1r+a_1r^2+a_1r^3+...+a_1r^{n} \\(1-r)S_n = a_1-a_1r^n =a_1(1-r^n) \\S_n = a_1\frac{1-r^n}{1-r}
profile
Data analysis, statistics

0개의 댓글