머신러닝에 필요한 기초 수학 정리

미남잉·2022년 3월 28일
5

저는 한빛미디어의 '파이썬으로 배우는 머신러닝의 교과서' 책을 바탕으로 내용을 직접 필기하여 정리하였습니다.

내용의 출처는 모두 해당 책임을 밝히며, 책으로 보고 싶으신 분들은 'CHAPTER 4 머신러닝에 필요한 수학의 기본'을 참고하시면 됩니다.

필기 자료를 사용하실 경우, 출처를 밝혀주시거나 댓글로 알려주세요.

감사합니다.🙂

편미분


다변수의 중첩 함수의 미분

내부 함수가 3개 이상이라면, 어떻게 편미분을 진행하는지

편미분은 backpropagation에서 gradient를 구할 때 알고 있어야 하는 파트입니다.


행렬과 연립방정식


행렬과 사상

저는 linear mapping과 linear transformation, linear operation의 개념이 다 따로 놀았는데,

이번을 기회로 되게 깔끔하고 쉽게 개념을 이해할 수 있었습니다.

선형결합을 보존하는 두 벡터 공간 사이의 함수


지수와 로그


로그의 성질

곱셈은 덧셈으로 변환된다.

로그는 단조증가 함수로서 로그를 취해도 최솟값, 최댓값을 취하는 값은 변하지 않는다.


지수함수, 로그함수의 미분


시그모이드 함수

시그모이드 함수의 식과 미분 식에 익숙해지면, 나중에 어떤 개념을 이해하는데 더 빠르게 이해할 수 있는 것 같습니다.


소프트맥스 함수

변수가 k개(2개 이상)일 때의 소프트맥스 함수 식입니다.


소프트맥스와 시그모이드 함수 관계

두 변수의 소프트맥스 함수의 입력 x0,x1x_0, x_1을 그 차이 x=x0x1x=x_0-x_1로 나타낸 것이 시그모이드 함수입니다.


가우스 함수

가우스 함수에 대한 식과 유도 과정은 조금 낯설었네요. 분명히 아는 정규분포의 개념인데도 말이죠~


2차원 가우스함수

이상 기초 수학 정리를 마치겠습니다!

까먹을 때쯤 다시 보기 위하여!

그럼 모두 파이팅입니다.

profile
Computer Vision Engineer

1개의 댓글

comment-user-thumbnail
2023년 10월 15일

안녕하세요 글 잘 보고 있어요..!
제가 요즘 많이 고심하는데도 모르겠어서
여쭤보고 싶은 공업수학 문제가 있는데
혹시 답변 해주실 수 있으실까요..?
곤란 하시다면 답변 안 해주셔도 괜찮아요
문제는 이거예요…!

“분리가능 상미분 방정식은 양형태 상미분 방정식의 일부이고, 완전 상미분 방정식은 음형태 상미분 방정식 일부라고 볼 수 있다.
양형태의 상미분 방정식 중 분리가능한 상미분 방정식을 제외하고 남은 상미분 방정식들은 어떤 것들이 있는지 (즉, 분리가능하지 않은 상미분 방정식들), 음형태의 상미분 방정식 중 완전 상미분 방정식을 제외하고 남은 상미분 방정식들은 어떤 것들이 있는지 (즉, 완전하지 않은 상미분 방정식들) 쓰시오.
즉.
양형태의 상미분 방정식의 전체 집합을 W.
음형태의 상미분 방정식의 전체 집합을 U,
분리가능한 상미분 방정식의 전체 집합을 A,
완전 상미분 방정식의 전체 집합을 B
라고 할 때
집합 A^c ᑎ W 과 집합 B^c ᑎ U 에 대해 기술하는 문제이다. 그 집합에 해당하는 미분 방 정식의 예를 몇 개 구하고 그들의 공통된 특징을 기술하는 방법을 써도 좋고, 아니면 이 집 합에 속하는 방정식들의 특징을 바로 기술하여도 좋다.“

답글 달기