1.6 Linear Independence(1)

CharliePark·2020년 9월 11일
0

TIL

목록 보기
32/67

Linearly Independent

A set of vectors {v1,,vp}\begin{Bmatrix}\bold{v_1}, \cdots, \bold{v_p}\end{Bmatrix} in Rn\mathbb{R}^n is said to be linearly independent if the vector equation x1v1++xpvp=0x_1\bold{v_1} + \cdots + x_p\bold{v_p} = 0 has only trivial solutions

 

 

Linearly Dependent

The set {v1,,vp}\begin{Bmatrix}\bold{v_1}, \cdots, \bold{v_p}\end{Bmatrix} in Rn\mathbb{R}^n is said to be linearly dependent if there exist weights c1,,cpc_1, \cdots, c_p, not all zero, such that c1v1++cpvp=0c_1\bold{v_1} + \cdots + c_p\bold{v_p} = 0

not all zero는 all zero가 아닌 solution 이 하나라도 존재한다는 뜻이다

여기서 유의할 것은, not all zero는 모두 all zero가 아니라는 뜻이 아니라, zero가 아닌 weight가 하나라도 존재하면 된다는 뜻이기 때문에

c1v1++cpvp=0c_1\bold{v_1} + \cdots + c_p\bold{v_p} = 0 에서 임의의 벡터 vj\bold{v_j} 에 대해 vj=a1v1++apvp\bold{v_j} = a_1\bold{v_1} + \cdots + a_p\bold{v_p} 꼴로 항상 표현이 가능한 것은 아니다

(왜냐하면, vj\bold{v_j}의 weight가 0이라면, vj\bold{v_j}를 이항한 후 나머지 vector 들을 0으로 나눌 수가 없기 때문이다)

 

 

Example1.

v1=[123]v2=[456]v3=[210]\bold{v_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \bold{v_2} = \begin{bmatrix} 4\\5\\6 \end{bmatrix} \bold{v_3} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}

Solution

[142025103600][102001100000]\begin{bmatrix} 1 & 4 & 2 & 0\\ 2 & 5 & 1 & 0\\ 3 & 6 & 0 & 0\\ \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\\ \end{bmatrix} → linearly dependent!

(pivot 포지션이 두개이므로 결국 하나의 free variable이 생긴다. 이는 non trivial 이므로 linearly independent 하다)

so,

[102001100000]x12x3=0x2+x3=00=0if, x3=1, then x1=2, x2=12v1v2+v3=0\begin{bmatrix} 1 & 0 & -2 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\\ \end{bmatrix} \sim \begin{aligned} x_1 -2x_3 = 0\\ x_2 + x_3 = 0\\ 0 =0 \end{aligned} \\if,\ x_3=1,\ then\ x_1=2,\ x_2=-1\\\therefore 2\bold{v_1}-\bold{v_2}+\bold{v_3} = 0

so, the vector set has lienar dependency in the form of 2v1v2+v3=02\bold{v_1}-\bold{v_2}+\bold{v_3} = 0

 

 

Linear Independence of Matrix Columns

A=[a1an]A = \begin{bmatrix}\bold{a_1} \cdots \bold{a_n}\end{bmatrix}

Ax=0x1a1+x2a2++xnanA\bold{x} = 0\\ x_1\bold{a_1} + x_2\bold{a_2} + \cdots + x_n\bold{a_n}

The columns of a matrix AA are linearly independent if and only if the equations Ax=0A\bold{x} = 0 has only the trivial solution

Example2. Determine if the columns of the following matrix are linearly independent

A=[014121580]A = \begin{bmatrix} 0 & 1 & 4\\ 1 & 2 & -1\\ 5 & 8 & 0\\ \end{bmatrix}

solution

Ax=0[014012105800][100002000010]A\bold{x} = 0 \sim \begin{bmatrix} 0 & 1 & 4 & 0\\ 1 & 2 & -1 & 0\\ 5 & 8 & 0 & 0\\ \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0\\ \end{bmatrix}

so, x1=x2=x3=0x_1 = x_2 = x_3 = 0 → trivial!

so, linearly independent!

 

 

Sets of One Vector

If a set contains only one vector, v\bold{v}, then the set is linearly independent, only when v0v \not = 0

 

 

Sets of Two Vectors

  • A set {v1,v2}\begin{Bmatrix}\bold{v_1},\bold{v_2}\end{Bmatrix} is linearly dependent if at least one of the vectors is a multiple of the other
  • The set is linearly independent, if and only if, neither of the vectors is multiple of the other

0개의 댓글