Linearly Independent
A set of vectors {v1,⋯,vp} in Rn is said to be linearly independent if the vector equation x1v1+⋯+xpvp=0 has only trivial solutions
Linearly Dependent
The set {v1,⋯,vp} in Rn is said to be linearly dependent if there exist weights c1,⋯,cp, not all zero, such that c1v1+⋯+cpvp=0
not all zero는 all zero가 아닌 solution 이 하나라도 존재한다는 뜻이다
여기서 유의할 것은, not all zero는 모두 all zero가 아니라는 뜻이 아니라, zero가 아닌 weight가 하나라도 존재하면 된다는 뜻이기 때문에
c1v1+⋯+cpvp=0 에서 임의의 벡터 vj 에 대해 vj=a1v1+⋯+apvp 꼴로 항상 표현이 가능한 것은 아니다
(왜냐하면, vj의 weight가 0이라면, vj를 이항한 후 나머지 vector 들을 0으로 나눌 수가 없기 때문이다)
Example1.
v1=⎣⎢⎡123⎦⎥⎤v2=⎣⎢⎡456⎦⎥⎤v3=⎣⎢⎡210⎦⎥⎤
Solution
⎣⎢⎡123456210000⎦⎥⎤∼⎣⎢⎡100010−210000⎦⎥⎤ → linearly dependent!
(pivot 포지션이 두개이므로 결국 하나의 free variable이 생긴다. 이는 non trivial 이므로 linearly independent 하다)
so,
⎣⎢⎡100010−210000⎦⎥⎤∼x1−2x3=0x2+x3=00=0if, x3=1, then x1=2, x2=−1∴2v1−v2+v3=0
so, the vector set has lienar dependency in the form of 2v1−v2+v3=0
Linear Independence of Matrix Columns
A=[a1⋯an]
Ax=0x1a1+x2a2+⋯+xnan
The columns of a matrix A are linearly independent if and only if the equations Ax=0 has only the trivial solution
Example2. Determine if the columns of the following matrix are linearly independent
A=⎣⎢⎡0151284−10⎦⎥⎤
solution
Ax=0∼⎣⎢⎡0151284−10000⎦⎥⎤∼⎣⎢⎡100020001000⎦⎥⎤
so, x1=x2=x3=0 → trivial!
so, linearly independent!
Sets of One Vector
If a set contains only one vector, v, then the set is linearly independent, only when v=0
Sets of Two Vectors
- A set {v1,v2} is linearly dependent if at least one of the vectors is a multiple of the other
- The set is linearly independent, if and only if, neither of the vectors is multiple of the other