Converse, Inverse, Biconditional

CharliePark·2020년 9월 10일
0

TIL

목록 보기
31/67

https://andymath.com/wp-content/uploads/2019/07/ConditionalNotes1.jpg

Converse and Inverse

pqpqqp¬p¬q¬p¬qTTTTFFTTFFTFTTFTTFTFFFFTTTTTso, converse  inverse\begin{matrix} p & q & p \to q & q \to p& \neg p & \neg q & \neg p \to \neg q\\ T & T & T & T & F & F & T\\ T & F & F & T & F & T & T\\ F & T & T & F & T & F & F\\ F & F & T & T & T & T & T \end{matrix}\\ so,\ converse\ \equiv\ inverse

Biconditional Statement

p    qp \iff q

if and only if (iff)

pqp    qTTTTFFFTFFFT\begin{matrix} p & q & p \iff q \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{matrix}

ex1p    q(pq)(qp)pqpqqp(pq)(qp)p    qTTTTTTTFFTFFFTTFFFFFTTTTex1\\ p \iff q \equiv (p \to q) \land (q \to p)\\ \begin{matrix} p & q & p \to q & q \to p & (p \to q) \land (q \to p) & p \iff q \\ T & T & T & T & T & T \\ T & F & F & T & F & F \\ F & T & T & F & F & F \\ F & F & T & T & T & T \end{matrix}

ex2(p(qr))((pq)r)proofpqrqr(p(qr)pq(pq)rTTTTTTTTTFFFTFTFTTTFTTFFTTFTFTTTTFTFTFFTFTFFTTTFTFFFTTFTex2\\ (p \to (q \to r)) \equiv ((p \land q) \to r)\\ proof\\ \begin{matrix} p & q & r & q \to r & (p \to (q \to r) & p \land q & (p \land q) \to r\\ T & T & T & T & T & T & T \\ T & T & F & F & F & T & F \\ T & F & T & T & T & F & T \\ T & F & F & T & T & F & T \\ F & T & T & T & T & F & T \\ F & T & F & F & T & F & T \\ F & F & T & T & T & F & T \\ F & F & F & T & T & F & T \\ \end{matrix}

0개의 댓글