Projective Geometry - 2D: Homography

Woo Yeong CHO·2021년 11월 20일
0

MVG

목록 보기
4/8

Homography (Projective Transformation)

  • Definition : A mapping h(.):P2=>P2h(.): P^2 => P^2 such that

    x1,x2,x3   lie on the same line=>h(x1),h(x2),h(x3)x_1, x_2, x_3 \ \ \ lie \ on \ the \ same \ line => h(x_1), h(x_2), h(x_3)
  • Transformation

Equation of 2D projective Transformations ( where HH could be 3 x 3 matrix )

Point: x=Hxx' = Hx

Line : l=HTl  where  HT=(H1)Tl' = H^{-T}l \ \ where \ \ H^{-T} = (H^{-1})^T

\because    lTx=0\ \ \ l^Tx=0, lTx=lT(H1x)=(lTH1)xl^Tx = l^T(H^{-1}x') = (l^TH^{-1})x'

\therefore (lTH1)x=0(l^TH^{-1})x' = 0

Hierarchy of Projective Transformations

  • Isometries(Euclidean)
  • Similarity Transformations
  • Affine Transformations
  • General Projective Transformations

Properties of Projective Transformations

  • Vanishing lines
  • Decompositions

profile
I wanna be a specialist! My previous webpage link https://chowy333.tistory.com/

0개의 댓글