방향 그래프가 주어졌을 때, 그 그래프를 SCC들로 나누는 프로그램을 작성하시오.
방향 그래프의 SCC는 우선 정점의 최대 부분집합이며, 그 부분집합에 들어있는 서로 다른 임의의 두 정점 u, v에 대해서 u에서 v로 가는 경로와 v에서 u로 가는 경로가 모두 존재하는 경우를 말한다.
예를 들어 위와 같은 그림을 보자. 이 그래프에서 SCC들은 {a, b, e}, {c, d}, {f, g}, {h} 가 있다. 물론 h에서 h로 가는 간선이 없는 경우에도 {h}는 SCC를 이룬다.
첫째 줄에 두 정수 V(1 ≤ V ≤ 10,000), E(1 ≤ E ≤ 100,000)가 주어진다. 이는 그래프가 V개의 정점과 E개의 간선으로 이루어져 있다는 의미이다. 다음 E개의 줄에는 간선에 대한 정보를 나타내는 두 정수 A, B가 주어진다. 이는 A번 정점과 B번 정점이 연결되어 있다는 의미이다. 이때 방향은 A → B가 된다.
정점은 1부터 V까지 번호가 매겨져 있다.
첫째 줄에 SCC의 개수 K를 출력한다. 다음 K개의 줄에는 각 줄에 하나의 SCC에 속한 정점의 번호를 출력한다. 각 줄의 끝에는 -1을 출력하여 그 줄의 끝을 나타낸다. 각각의 SCC를 출력할 때 그 안에 속한 정점들은 오름차순으로 출력한다. 또한 여러 개의 SCC에 대해서는 그 안에 속해있는 가장 작은 정점의 정점 번호 순으로 출력한다.
https://www.acmicpc.net/problem/2150
SCC알고리즘 구현에대한 기본문제입니다.!
(SCC알고리즘 >> https://velog.io/@cldhfleks2/Strongly-Connected-Component)
무조건 학습후 한번 풀어보는것을 추천드립니다.
SCC자체만 구현하면되므로 그외에 고려사항은 없어보이네요.
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
#define mp std::make_pair
#define mt std::make_tuple
#define dq std::deque
#define pq std::priority_queue
#define sw std::swap
#define ts(x) std::to_string(x)
#define tc() c_str()
#define sc(x, ...) scanf(x, ##__VA_ARGS__)
#define pr(x, ...) printf(x, ##__VA_ARGS__)
#define ins(x) insert(x)
#define pb(x) push_back(x)
#define pf(x) push_front(x)
#define PB() pop_back()
#define PF() pop_front()
#define ph(x) push(x)
#define TT() top()
#define PP() pop()
#define BB() back()
#define FF() front()
#define cls() clear()
#define emp() empty()
#define len(x) x.length()
#define sz(x) ((int)x.size()) //컨테이너에서 사용
#define ms(a) memset(a, 0, sizeof(a)) //0으로 초기화
#define rep(i, n) for(int i = 0; i < n ; i++)
#define rrep(i, r, n) for(int i = r; i < n ; i++)
#define rrrep(i, r, n) for(ll i = r; i < n ; i++)
#define _rrep(i, r, n) for(int i = r; i >= n; i--)
#define _rrrep(i, r, n) for(ll i = r; i >= n; i--)
#define each(x, a) for (auto& x: a)
#define all(x) x.begin(),x.end() //STL에서 전체 처리할때 사용
#define range(x, r, n) x.begin() + r, x.begin() + n //STL에서 구간설정
#define ct continue
#define br break
#define rt return
#define _TYF typedef //코드줄이기
#define _UG using
#define _TCE template <class T> inline
#define MAX 10001
const int IMAX = INT32_MAX; const int IMIN = INT32_MIN;
const long long LMAX = LLONG_MAX; const long long LMIN = LLONG_MIN;
const long double PI = 3.141592653589793238462643383279502884197;
_UG std::vector; _UG std::stack; _UG std::queue; _UG std::tuple; _UG std::set; _UG std::list; _UG std::bitset; _UG std::string; _UG std::pair; _UG std::greater;
_UG std::tie; _UG std::sort; _UG std::max_element; _UG std::min_element; _UG std::fill; _UG std::stoi; _UG std::stod; _UG std::stof; _UG std::stol; _UG std::stold; _UG std::stoll; _UG std::stoul; _UG std::stoull;
_UG std::min; //_UG std::map;
_TYF long long ll; _TYF unsigned long long ull;
_TYF pair<int, int> pii; _TYF pair<double, int> pdi; _TYF pair<int, double> pid; _TYF pair<double, double> pdd; _TYF pair<int, ll> pil;
_TYF pair<ll, int> pli; _TYF pair<ll, ll> pll; _TYF pair<ull, ull> pullull; _TYF pair<int, char> pic; _TYF pair<char, int> pci;
_TYF pair<char, char> pcc; _TYF pair<long, char> plc; _TYF pair<char, long> pcl; _TYF pair<ll, char> pllc; _TYF pair<char, ll> pcll;
_TYF pair<ull, char> pullc; _TYF pair<char, ull> pcull; _TYF pair<int, string> pis; _TYF pair<string, int> psi; _TYF pair<long, string> pls;
_TYF pair<string, long> psl; _TYF pair<ll, string> plls; _TYF pair<string, ll> psll; _TYF pair<ull, string> pulls;
_TYF pair<string, ull> psull; _TYF pair<string, string> pss;
_TYF tuple<int, int, int> tiii; _TYF tuple<int, int, int, int> tiiii;
_TYF tuple<ll, ll, ll> tlll; _TYF tuple<ll, ll, ll, ll> tllll;
_TYF vector<string> vs; _TYF queue<string> qs; _TYF stack<string> ss; _TYF dq<string> dqs; _TYF pq<string> pqs; _TYF dq<string> dqs;
_TYF vector<char> vc; _TYF queue<char> qc; _TYF stack<char> sc; _TYF dq<char> dqc; _TYF pq<char> pqc; _TYF dq<char> dqc;
_TYF vector<int> vi; _TYF queue<int> qi; _TYF stack<int> si; _TYF dq<int> dqi; _TYF pq<int> pqi; _TYF dq<int> dqi;
_TYF vector<pii> vii; _TYF queue<pii> qii; _TYF stack<pii> sii; _TYF dq<pii> dqii; _TYF pq<pii> pqii; _TYF dq<pii> dqii;
_TYF vector<tiii> viii; _TYF queue<tiii> qiii; _TYF stack<tiii> siii; _TYF dq<tiii> dqiii; _TYF pq<tiii> pqiii; _TYF dq<tiii> dqiii;
_TYF vector<tiiii> viiii; _TYF queue<tiiii> qiiii; _TYF stack<tiiii> siiii; _TYF dq<tiiii> dqiiii; _TYF pq<tiiii> pqiiii; _TYF dq<tiiii> dqiiii;
_TYF vector<pll> vll; _TYF queue<pll> qll; _TYF stack<ll> sll; _TYF dq<pll> dqll; _TYF pq<pll> pqll; _TYF dq<pll> dqll;
_TYF vector<tlll> vlll; _TYF queue<tlll> qlll; _TYF stack<tlll> slll; _TYF dq<tlll> dqlll; _TYF pq<tlll> pqlll; _TYF dq<tlll> dqlll;
_TYF vector<tllll> vllll; _TYF queue<tllll> qllll; _TYF stack<tllll> sllll; _TYF dq<tllll> dqllll; _TYF pq<tllll> pqllll; _TYF dq<tllll> dqllll;
_TCE T sq(T num) { rt num* num; }//제곱함수
_TCE T GCD(T num1, T num2) { if (num2 == 0) rt num1; rt GCD(num2, num1 % num2); }
_TCE T LCM(T num1, T num2) { if (num1 == 0 || num2 == 0) rt num1 + num2; rt num1* (num2 / GCD(num1, num2)); }
//STL 전용 초기화 함수들 ( ms~~ )
_TCE void msq(T& a) { while (!a.empty()) a.PP(); }//queue clear
_TCE void msv(T& a) { a.cls(); }//vector clear
_TCE void msdq(T& a) { a.cls(); }//deque clear
_TCE void msm(T& a) { a.cls(); }//map clear
_TCE void mss(T& a) { while (!a.empty()) a.PP(); }//stack, set clear
_TCE void mspq(T& a) { while (!a.empty()) a.PP(); }//priority_queue clear
//pii operator - (pii a, pii b) { rt pii(a.first - b.first, a.second - b.second); }
//bool operator <= (pii a, pii b) { rt a.first <= b.first && a.second <= b.second; }
//bool operator >= (pii a, pii b) { rt a.first >= b.first && a.second >= b.second; }
//bool operator < (pii a, pii b) { if (a == b) return false; rt a <= b; }
//bool operator > (pii a, pii b) { if (a == b) return false; rt a >= b; }
int N, E, id;
vi arr[MAX];
int P[MAX];
bool visited[MAX];
vector<vi> SCC;
si S;
void init();
int DFSinSCC(int x);
void printAll();
void func();
void init() {
sc("%d%d", &N, &E);
while (E--) {
int a, b;
sc("%d%d", &a, &b);
arr[a].pb(b); //A -> B로 이동가능
}
}
int DFSinSCC(int x) {
P[x] = ++id; //현재 부모는 자기자신
S.ph(x); //스택에 자기자신을 넣음
//1. parent를 구하는과정
int parent = P[x];
rep(i, sz(arr[x])) { //연결된 모든 정점을 탐색
int y = arr[x][i];
if (P[y] == 0)
parent = min(parent, DFSinSCC(y)); //DFS를 통해 값을 가져와서 최솟값 갱신
else if (!visited[y])
parent = min(parent, P[y]); //이미 구한값으로 최솟값 갱신
}
//2. 스택에서 꺼내는 과정
//구한 parent가 자기자신이라면 스택에서 꺼낸다.
if (parent == P[x]) {
vi scc; //추출해서 만들 scc
while (x) { //자기자신이 나올때 까지 POP
int y = S.TT();
S.PP();
visited[y] = true;
scc.pb(y);
if (y == x) br; //자기자신을 꺼내면 종료
}
sort(all(scc));
SCC.pb(scc); //찾은 SCC를 저장
}
return parent; //구한 부모노드값 리턴
}
void printAll() {
pr("%d\n", sz(SCC));
rep(i, sz(SCC)) {
rep(j, sz(SCC[i])) {
pr("%d ", SCC[i][j]);
}
pr("-1\n");
}
}
//프로그램 메인 로직
void func() {
rrep(i, 1, N + 1) { //1~N까지
if (P[i] == 0) DFSinSCC(i); //방문하지 않은 점들에한에서 DFS진행
}
sort(all(SCC));
printAll(); //결과물 출력
}
int main(void) {
init();
func();
rt 0;
}