2-2. Fixed-Point Iteration

공부하자·2022년 9월 19일
0

수치해석

목록 보기
2/9
post-thumbnail

Summary

Functional (Fixed-Point) Iteration

만약 g가 어떤 p\in[a,b]에 대해 [a,b]와 g(p)=p에 정의된다면, 함수 g는 [a,b]에서 고정점 p를 갖는다.

Intermediate Value Therem

만약 f\in[a,b]와 K가 f(a)와 f(b) 사이의 임의의 수라면, f(c)=K인 수 c\in(a,b)가 존재한다.

Uniqueness Result

모든 x[a,b]x \in[a, b]에 대해 gC[a,b]g \in C[a, b]g(x)[a,b]g(x) \in[a, b]로 하자. 또한 g(x)g^{\prime}(x)(a,b)(a, b)에 존재한다면

g(x)k<1,x[a,b],\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b],

그렇다면 함수 gg[a,b][a, b]에서 고유한 고정점 pp를 갖는다.

Convergence Result

Let gC[a,b]g \in C[a, b] with g(x)[a,b]g(x) \in[a, b] for all x[a,b]x \in[a, b]. Let g(x)g^{\prime}(x) exist on (a,b)(a, b) with

g(x)k<1,x[a,b].\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b] .

If p0p_0 is any point in [a,b][a, b] then the sequence defined by

pn=g(pn1),n1,p_n=g\left(p_{n-1}\right), \quad n \geq 1,

will converge to the unique fixed point pp in [a,b][a, b].

Corrollary to the Convergence Result

If gg satisfies the hypothesis of the Theorem, then

pnpkn1kp1p0.\left|p_n-p\right| \leq \frac{k^n}{1-k}\left|p_1-p_0\right| .

Introduction & Theoretical Framework

Functional (Fixed-Point) Iteration

Prime Objective

  • In what follows, it is important not to lose sight of our prime objective:
  • Given a function f(x)f(x) where axba \leq x \leq b, find values pp such that f(p)=0f(p)=0
  • Given such a function, f(x)f(x), we now construct an auxiliary function g(x)g(x) such that
    p=g(p)p=g(p)
    whenever f(p)=0f(p)=0 (this construction is not unique).
  • The problem of finding pp such that p=g(p)p=g(p) is known as the fixed point problem.

a≤x≤b인 함수 f(x)가 주어졌을 때, f(p)=0인 값 p를 구한다.
이러한 함수 f(x)가 주어지면, 우리는 이제 p=g(p)와 같은 보조 함수 g(x)를 구성한다.
f(p)=0일 때마다(이 구조는 unique하지 않음).
p=g(p)가 되는 p를 찾는 문제를 고정점 문제라고 한다

Functional (Fixed-Point) Iteration

A Fixed Point

If gg is defined on [a,b][a, b] and g(p)=pg(p)=p for some p[a,b]p \in[a, b], then the function gg is said to have the fixed point pp in [a,b][a, b].

만약 g가 어떤 pθ[a,b]에 대해 [a,b]와 g(p)=p에 정의된다면, 함수 g는 [a,b]에서 고정점 p를 갖는다고 한다.

Note

  • The fixed-point problem turns out to be quite simple both theoretically and geometrically.
  • The function g(x)g(x) will have a fixed point in the interval [a,b][a, b] whenever the graph of g(x)g(x) intersects the line y=xy=x.

고정점 문제는 이론적으로나 기하학적으로나 꽤 간단한 것으로 밝혀졌다.
함수 g(x)는 g(x)의 그래프가 y=x선과 교차할 때마다 구간 [a,b]에서 고정점을 갖는다.

The Equation f(x)=xcos(x)=0f(x)=x-\cos (x)=0

If we write this equation in the form:

x=cos(x)x=\cos (x)

then g(x)=cos(x)g(x)=\cos (x)

Single Nonlinear Equation f(x)=x-cos(x)=0

Functional (Fixed-Point) Iteration


Existence of a Fixed Point

If gC[a,b]g \in C[a, b] and g(x)[a,b]g(x) \in[a, b] for all x[a,b]x \in[a, b] then the function gg has a fixed point in [a,b][a, b].

Proof

  • If g(a)=ag(a)=a or g(b)=bg(b)=b, the existence of a fixed point is obvious.
  • Suppose not; then it must be true that g(a)>ag(a)>a and g(b)<bg(b)<b.
  • Define h(x)=g(x)x;hh(x)=g(x)-x ; h is continuous on [a,b][a, b] and, moreover,
    h(a)=g(a)a>0,h(b)=g(b)b<0.h(a)=g(a)-a>0, \quad h(b)=g(b)-b<0 .
  • The Intermediate Value Theorem \&ivi implies that there exists p(a,b)p \in(a, b) for which h(p)=0h(p)=0.
  • Thus g(p)p=0g(p)-p=0 and pp is a fixed point of gg.

Intermediate Value Theorem

If fC[a,b]f \in C[a, b] and KK is any number between f(a)f(a) and f(b)f(b), then there exists a number c(a,b)c \in(a, b) for which f(c)=Kf(c)=K.

만약 f\in[a,b]와 K가 f(a)와 f(b) 사이의 임의의 수라면, f(c)=K인 수 c\in(a,b)가 존재한다.

g(x)g(x) has a Fixed Point in [a,b][a,b].

Illustration

  • Consider the function g(x)=3xg(x)=3^{-x} on 0x1.g(x)0 \leq x \leq 1 . g(x) is continuous and since
    g(x)=3xlog3<0 on [0,1]g^{\prime}(x)=-3^{-x} \log 3<0 \quad \text { on }[0,1]
    g(x)g(x) is decreasing on [0,1][0,1].
  • Hence
    g(1)=13g(x)1=g(0)g(1)=\frac{1}{3} \leq g(x) \leq 1=g(0)
    i.e. g(x)[0,1]g(x) \in[0,1] for all x[0,1]x \in[0,1] and therefore, by the preceding result, g(x)g(x) must have a fixed point in [0,1][0,1].

Functional (Fixed-Point) Iteration

An Important Observation

  • It is fairly obvious that, on any given interval I=[a,b],g(x)I=[a, b], g(x) may have many fixed points (or none at all).
  • In order to ensure that g(x)g(x) has a unique fixed point in I, we must make an additional assumption that g(x)g(x) does not vary too rapidly.
  • Thus we have to establish a uniqueness result.

주어진 간격 I=[a,b]에서g(x)I=[a,b]에서 g(x)는 많은 고정점을 가질 수 있다는 것은 꽤 명백하다.
g(x)g(x)가 I에서 고유한 고정점을 가지도록 하려면 g(x)g(x)가 너무 빠르게 변하지 않는다는 추가 가정을 해야 한다.
따라서 우리는 특이성 결과를 확립해야 한다.

Uniqueness Result

Let gC[a,b]g \in C[a, b] and g(x)[a,b]g(x) \in[a, b] for all x[a,b]x \in[a, b]. Further if g(x)g^{\prime}(x) exists on (a,b)(a, b) and

모든 x[a,b]x \in[a, b]에 대해 gC[a,b]g \in C[a, b]g(x)[a,b]g(x) \in[a, b]로 하자. 또한 g(x)g^{\prime}(x)(a,b)(a, b)에 존재한다면

g(x)k<1,x[a,b],\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b],

then the function gg has a unique fixed point pp in [a,b][a, b]

그렇다면 함수 gg[a,b][a, b]에서 고유한 고정점 pp를 갖는다.

Unique Fixed Point: g(x)1\left|g^{\prime}(x)\right| \leq 1 for all x[a,b]x \in[a, b]

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

  • Assuming the hypothesis of the theorem, suppose that pp and qq are both fixed points in [a,b][a, b] with pqp \neq q.
  • By the Mean Value Theorem a millustration, a number ξ\xi exists between pp and qq and hence in [a,b][a, b] with
    pq=g(p)g(q)=g(ξ)pqkpq<pq\begin{aligned} |p-q|=|g(p)-g(q)| &=\left|g^{\prime}(\xi)\right||p-q| \\ & \leq k|p-q| \\ &<|p-q| \end{aligned}
    which is a contradiction. >모순
  • This contradiction must come from the only supposition, pqp \neq q.
  • Hence, p=qp=q and the fixed point in [a,b][a, b] is unique.

Mean Value Theorem

If fC[a,b]f \in C[a, b] and ff is differentiable on (a,b)(a, b), then a number cc exists such that

f(c)=f(b)f(a)baf^{\prime}(c)=\frac{f(b)-f(a)}{b-a}

Motivating the Algorithm: An Example

A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

x2x1=0x^2-x-1=0

Positive Root

The positive root of this equations is:

x=1+521.618034x=\frac{1+\sqrt{5}}{2} \approx 1.618034

Single Nonlinear Equation f(x)=x2x1=0f(x)=x^2-x-1=0

Fixed Point Formulation 1

Single Nonlinear Equation f(x)=x2x1=0f(x)=x^2-x-1=0

One Possible Formulation for g(x)g(x)
Transpose the equation f(x)=0f(x)=0 for variable xx :

x2x1=0x2=x+1x=±x+1\begin{aligned} x^2-x-1 &=0 \\ \Rightarrow \quad x^2 &=x+1 \\ \Rightarrow \quad x &=\pm \sqrt{x+1} \end{aligned}
g(x)=x+1g(x)=\sqrt{x+1}

xn+1=g(xn)=xn+1x_{n+1}=g\left(x_n\right)=\sqrt{x_n+1} with x0=0x_0=0



xn+1=g(xn)=xn+1x_{n+1}=g\left(x_n\right)=\sqrt{x_n+1} with x0=0x_0=0

Rate of Convergence

We require that g(x)k<1\left|g^{\prime}(x)\right| \leq k<1. Since
g(x)=x+1g(x)=\sqrt{x+1} and g(x)=12x+1>0g^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}>0 for x0x \geq 0
we find that

g(x)=12x+1<1 for all x>34g^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}<1 \quad \text { for all } x>-\frac{3}{4}

Note

g(p)0.30902g^{\prime}(p) \approx 0.30902

Fixed Point Formulation 2

Single Nonlinear Equation f(x)=x2x1=0f(x)=x^2-x-1=0

A Second Formulation for g(x)g(x)

Transpose the equation f(x)=0f(x)=0 for variable xx :

x2x1=0x2=x+1x=1+1x\begin{aligned} x^2-x-1 &=0 \\ \Rightarrow \quad x^2 &=x+1 \\ \Rightarrow \quad x &=1+\frac{1}{x} \end{aligned}
g(x)=1+1xg(x)=1+\frac{1}{x}

x_{n+1}=g\left(x_n\right)=\frac{1}{x_n}+1 \text { with } x_0=1




xn+1=g(xn)=1xn+1x_{n+1}=g\left(x_n\right)=\frac{1}{x_n}+1 with x0=1x_0=1

Rate of Convergence

We require that g(x)k<1\left|g^{\prime}(x)\right| \leq k<1. Since
g(x)=1x+1g(x)=\frac{1}{x}+1 \quad and g(x)=1x2<0\quad g^{\prime}(x)=-\frac{1}{x^2}<0 for xx
we find that

g(x)=12x+1>1 for all x>1g^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}>-1 \quad \text { for all } x>1

Note

g(p)0.38197g^{\prime}(p) \approx-0.38197

Functional (Fixed-Point) Iteration

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x)g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

이제 g(x)g(x)가 I에서 고유한 고정점을 갖는 조건을 설정했으므로, 그것을 찾는 방법에 대한 문제가 남아 있다. 사용된 기술은 고정점 반복으로 알려져 있다.

Basic Approach

  • To approximate the fixed point of a function gg, we choose an initial approximation p0p_0 and generate the sequence {pn}n=0\left\{p_n\right\}_{n=0}^{\infty} by letting pn=g(pn1)p_n=g\left(p_{n-1}\right), for each n1n \geq 1.

    함수 gg의 고정점을 근사화하기 위해 초기 근사치 p0p_0을 선택하고 각 n1n \geq 1에 대해 pn=g(pn1)p_n=g\left(p_{n-1}\right)를 허용하여 {pn}\left\{p_n\right\}^{\infty} 시퀀스를 생성한다.

  • If the sequence converges to pp and gg is continuous, then
    p=limnpn=limng(pn1)=g(limnpn1)=g(p),p=\lim _{n \rightarrow \infty} p_n=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p),
    and a solution to x=g(x)x=g(x) is obtained.

    만약 시퀀스가 pp로 수렴하고 gg가 연속이라면, p=g(p)p=g(p)이고
    그리고 x=g(x)x=g(x)에 대한 솔루션을 얻는다.

  • This technique is called fixed-point, or functional iteration.

    이 기술을 고정점 또는 기능 반복이라고 한다.

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of gg in an interval [a,b][a, b], given the equation x=g(x)x=g(x) with an initial guess p0[a,b]p_0 \in[a, b] :
1. n=1n=1;
2. pn=g(pn1)p_n=g\left(p_{n-1}\right);
3. If pnpn1<ϵ\left|p_n-p_{n-1}\right|<\epsilon then 5 ;
4. nn+1n \rightarrow n+1; go to 2 .
5. End of Procedure.

A Single Nonlinear Equation

Example 1

The equation

x3+4x210=0x^3+4 x^2-10=0

has a unique root in [1,2]. Its value is approximately 1.3652300131.365230013.

f(x)=x34x210=0f(x)=x^3-4x^2-10=0 on[1,2][1,2]

Possible Choices for g(x)g(x)

  • There are many ways to change the equation to the fixed-point form x=g(x)x=g(x) using simple algebraic manipulation.
  • For example, to obtain the function gg described in part (c), we can manipulate the equation x3+4x210=0x^3+4 x^2-10=0 as follows:
    4x2=10x3,4 x^2=10-x^3, \quad so x2=14(10x3),\quad x^2=\frac{1}{4}\left(10-x^3\right), \quad and x=±12(10x3)1/2\quad x=\pm \frac{1}{2}\left(10-x^3\right)^{1 / 2}
  • We will consider 5 such rearrangements and, later in this section, provide a brief analysis as to why some do and some not converge to p=1.365230013p=1.365230013.

5 Possible Transpositions to x=g(x)x=g(x)

x=g1(x)=xx34x2+10x=g2(x)=10x4xx=g3(x)=1210x3x=g4(x)=104+xx=g5(x)=xx3+4x2103x2+8x\begin{aligned} &x=g_1(x)=x-x^3-4 x^2+10 \\ &x=g_2(x)=\sqrt{\frac{10}{x}-4 x} \\ &x=g_3(x)=\frac{1}{2} \sqrt{10-x^3} \\ &x=g_4(x)=\sqrt{\frac{10}{4+x}} \\ &x=g_5(x)=x-\frac{x^3+4 x^2-10}{3 x^2+8 x} \end{aligned}

Numberical Restults for f(x)=x34x210=0f(x)=x^3-4x^2-10=0

Solving f(x)=x3+4x210=0f(x)=x^3+4 x^2-10=0

x=g(x)x=g(x) with x0=1.5x_0=1.5
x=g1(x)=xx34x2+10x=g_1(x)=x-x^3-4 x^2+10 Does not Converge
x=g2(x)=10x4xx=g_2(x)=\sqrt{\frac{10}{x}-4 x} \quad Does not Converge
x=g3(x)=1210x3x=g_3(x)=\frac{1}{2} \sqrt{10-x^3}
Converges after 31 Iterations
x=g4(x)=104+xx=g_4(x)=\sqrt{\frac{10}{4+x}}
Converges after 12 Iterations
x=g5(x)=xx3+4x2103x2+8xx=g_5(x)=x-\frac{x^3+4 x^2-10}{3 x^2+8 x}
Converges after 5 Iterations

Convergence Criteria for the Fixed-Point Method

Functional (Fixed-Point) Iteration

A Crucial Question

  • How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?
  • The following theorem and its corollary give us some clues concerning the paths we should pursue and, perhaps more importantly, some we should reject.

Convergence Result

Let gC[a,b]g \in C[a, b] with g(x)[a,b]g(x) \in[a, b] for all x[a,b]x \in[a, b]. Let g(x)g^{\prime}(x) exist on (a,b)(a, b) with

g(x)k<1,x[a,b].\left|g^{\prime}(x)\right| \leq k<1, \quad \forall x \in[a, b] .

If p0p_0 is any point in [a,b][a, b] then the sequence defined by

pn=g(pn1),n1,p_n=g\left(p_{n-1}\right), \quad n \geq 1,

will converge to the unique fixed point pp in [a,b][a, b].

Proof of the Convergence Result

  • By the Uniquenes Theorem, a unique fixed point exists in [a,b][a, b].
  • Since gg maps [a,b][a, b] into itself, the sequence {pn}n=0\left\{p_n\right\}_{n=0}^{\infty} is defined for all n0n \geq 0 and pn[a,b]p_n \in[a, b] for all nn.
  • Using the Mean Value Theorem g(x)k<1,x[a,b]\left|g^{\prime}(x)\right| \leq k<1, \forall x \in[a, b], we write
    pnp=g(pn1)g(p)g(ξ)pn1pkpn1p\begin{aligned} \left|p_n-p\right| &=\left|g\left(p_{n-1}\right)-g(p)\right| \\ & \leq\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right| \\ & \leq k\left|p_{n-1}-p\right| \end{aligned}
    where ξ(a,b)\xi \in(a, b)

Mean Value Theorem

If fC[a,b]f \in C[a, b] and ff is differentiable on (a,b)(a, b), then a number cc exists such that

f(c)=f(b)f(a)baf^{\prime}(c)=\frac{f(b)-f(a)}{b-a}

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

pnpkpn1pk2pn2pknp0p\begin{aligned} \left|p_n-p\right| & \leq k\left|p_{n-1}-p\right| \\ & \leq k^2\left|p_{n-2}-p\right| \\ & \leq k^n\left|p_0-p\right| \end{aligned}

Since k<1k<1

limnpnplimnknp0p=0,\lim _{n \rightarrow \infty}\left|p_n-p\right| \leq \lim _{n \rightarrow \infty} k^n\left|p_0-p\right|=0,

and {pn}n=0\left\{p_n\right\}_{n=0}^{\infty} converges to pp.

Corrollary to the Convergence Result

If gg satisfies the hypothesis of the Theorem, then

pnpkn1kp1p0.\left|p_n-p\right| \leq \frac{k^n}{1-k}\left|p_1-p_0\right| .

Proof of Corollary

For n1n \geq 1, the procedure used in the proof of the theorem implies that

pn+1pn=g(pn)g(pn1)kpnpn1knp1p0\begin{aligned} \left|p_{n+1}-p_n\right| &=\left|g\left(p_n\right)-g\left(p_{n-1}\right)\right| \\ & \leq k\left|p_n-p_{n-1}\right| \\ & \leq \cdots \\ & \leq k^n\left|p_1-p_0\right| \end{aligned}
pn+1pnknp1p0\left|p_{n+1}-p_n\right| \leq k^n\left|p_1-p_0\right|

Thus, for m>n1m>n \geq 1,

pmpn=pmpm1+pm1pm2++pn+1pnpmpm1+pm1pm2++pn+1pnkm1p1p0+km2p1p0++knp1p0kn(1+k+k2++kmn1)p1p0\begin{aligned} \left|p_m-p_n\right| &=\left|p_m-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_n\right| \\ & \leq\left|p_m-p_{m-1}\right|+\left|p_{m-1}-p_{m-2}\right|+\cdots+\left|p_{n+1}-p_n\right| \\ & \leq k^{m-1}\left|p_1-p_0\right|+k^{m-2}\left|p_1-p_0\right|+\cdots+k^n\left|p_1-p_0\right| \\ & \leq k^n\left(1+k+k^2+\cdots+k^{m-n-1}\right)\left|p_1-p_0\right| \end{aligned}
pmpnkn(1+k+k2++kmn1)p1p0\left|p_m-p_n\right| \leq k^n\left(1+k+k^2+\cdots+k^{m-n-1}\right)\left|p_1-p_0\right|

However, since limmpm=p\lim _{m \rightarrow \infty} p_m=p, we obtain

ppn=limmpmpnknp1p0i=1ki=kn1kp1p0.\begin{aligned} \left|p-p_n\right| &=\lim _{m \rightarrow \infty}\left|p_m-p_n\right| \\ & \leq k^n\left|p_1-p_0\right| \sum_{i=1}^{\infty} k^i \\ &=\frac{k^n}{1-k}\left|p_1-p_0\right| . \end{aligned}

Example: g(x)=g(x)=3xg(x)=g(x)=3^{-x}

Consider the iteration function g(x)=3xg(x)=3^{-x} over the interval [13,1]\left[\frac{1}{3}, 1\right] starting with p0=13p_0=\frac{1}{3}. Determine a lower bound for the number of iterations nn required so that pnp<105\left|p_n-p\right|<10^{-5} ?

Determine the Parameters of the Problem

Note that p1=g(p0)=313=0.6933612p_1=g\left(p_0\right)=3^{-\frac{1}{3}}=0.6933612 and, since g(x)=3xln3g^{\prime}(x)=-3^{-x} \ln 3, we obtain the bound

g(x)313ln3.7617362.762=k\left|g^{\prime}(x)\right| \leq 3^{-\frac{1}{3}} \ln 3 \leq .7617362 \approx .762=k

Use the Corollary

Therefore, we have

pnpkn1kp0p1.762n1.76213.69336121.513×0.762n\begin{aligned} \left|p_n-p\right| & \leq \frac{k^n}{1-k}\left|p_0-p_1\right| \\ & \leq \frac{.762^n}{1-.762}\left|\frac{1}{3}-.6933612\right| \\ & \leq 1.513 \times 0.762^n \end{aligned}

We require that

1.513×0.762n<105 or n>43.881.513 \times 0.762^n<10^{-5} \quad \text { or } \quad n>43.88

Footnote on the Estimate Obtained

  • It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
  • In the previous example, only 21 iterations are required in practice, i.e. p21=0.54781p_{21}=0.54781 is accurate to 10510^{-5}.
  • The reason, in this case, is that we used
    g(1)=0.762g^{\prime}(1)=0.762
    whereas
    g(0.54781)=0.602g^{\prime}(0.54781)=0.602
  • If one had used k=0.602k=0.602 (were it available) to compute the bound, one would obtain N=23N=23 which is a more accurate estimate.

Example

Sample Problem f(x)=x3+4x210=0f(x)=x^3+4 x^2-10=0

Trying myself.

profile
아주대학교 수업 기록

0개의 댓글