이번 포스트에서는 'An Introduction to Kernel-Based Learning Algorithms' 라는 Paper를 리뷰하며 머신러닝에서 널리 사용되는 커널 이론의 원리와 배경에 대해 알아보고자 한다. 이번 장에서는 먼저 커널 함수가 대표적으로 이용되는
이번 포스트에서는 저번에 살펴본 커널함수를 이용한 방법론들을 살펴보고자 한다. 커널에 의해 정의된 유사성 행렬similarity matrix 을 입력받아 처리하는 알고리즘을 Kernel Methods 라고 한다. 앞서 살펴본 것 처럼 커널은 유사성의 측도로도 정의되고,
주성분분석(Principal Component Analysis, 이하 PCA) 의 기본원리는 Input Matrix의 고유값을 이용해 Input 데이터들의 성분을 분리하는 것이다.Input Matrix $\\mathbf{X}$가 p개의 성분과 첫 열로 일벡터를 가지는
커널 트릭에서 살펴보았듯이, 커널을 이용하면 데이터셋을 특성 매핑(feature mapping)을 사용하지 않고도 동일한 연산을 수행할 수 있다. Input Space $\\mathbf{X}$의 데이터가 벡터 $\\mathbf{x_1,\\ldots,x_k}$ 로 주어진