[실해석학] 1. 실수체계

김당찬·2022년 2월 20일
0

Real analysis

목록 보기
1/24
post-thumbnail

1. Three Major Axioms in Real Numbers

1. Field Axiom (체공리)

다음 9가지 성질을 만족하는 set FF 를 Field(체) 라고 정의한다.

덧셈에 대한 교환법칙(Commutativity)
덧셈에 대한 결합법칙(Associativity)
덧셈에 대한 항등원(Identity) 존재
덧셈에 대한 역원(Inverse) 존재
곱셈에 대한 교환법칙(Commutativity)
곱셈에 대한 결합법칙(Associativity)
곱셈에 대한 항등원(Identity) 존재
곱셈에 대한 역원(Inverse) 존재
덧셈과 곱셈에 대한 분배법칙 성립

여기에 추가로 Nontriviality Assumption을 가정한다:

101 \neq 0

2. Positive Axiom

다음 두 가지 성질을 만족하는 양의 실수로 구성된 집합 P\mathcal P 가 존재한다.

P1. a,bPa, b \in \mathcal P 이면 a+b,abPa+b, ab \in \mathcal P
P2. aRa \in \Bbb R 이면 aPa \in \mathcal P 또는 aP-a \in \mathcal P or a=0a = 0

3. Completeness Axiom(완비성 공리)

만약 비어있지 않은 집합 ERE \subset \Bbb R 이 위로(아래로) 유계bounded이면 EE의 상한(하한) supE(infE)supE(infE) 가 존재한다.

Def R±\Bbb R \cup \pm \infty : Extended Real Numbers

: 만약 EE가 위로(아래로) 유계가 아니라면 ±\pm \inftyEE의 상한(하한)으로 정의한다

2. Natural / Rational Numbers

Def. A set ERE \subset \Bbb R is inductive :

1E,xE  then  x+1E1 \in E, x \in E\; \text{then} \; x+1 \in E

Def. Set of Natural Numbers(자연수 집합) 은 다음과 같이 정의한다.

N={all inductive subsets of R}\N = \bigcap^\infty\{\text{all inductive subsets of }\R\}

THM 1 비어있지 않은 모든 자연수 집합은 가장 작은 수를 가진다.

Archimedean Property (아르키메데스의 원리)

For    a,bR+,  nNs.t.na>b\text{For} \;\; \forall a,b \in \Bbb R^+, \; \exists n \in \Bbb N \quad s.t. \quad na \gt b

여기서 R+\R^+는 양의 실수 전체의 집합을 말한다.

Def ERE \subset \Bbb RR\Bbb R 안에서 조밀(dense)하다는 것은 다음을 의미한다:

For    x,y  R    eE    s.t    x<e<y\text{For} \;\; \forall x, y \; \in \Bbb R \;\; \exists e\in E \;\; s.t \;\; x \lt e \lt y

Reference

  • Real Analysis, Royden
profile
블로그 이사했습니다 https://ddangchani.github.io

0개의 댓글