Well ordering principle, Induction

STATS·2023년 7월 16일
0

해석개론

목록 보기
1/4

Well ordering Principle

집합 SSSNS \subset \N, SS \ne \empty일 때, SS는 최솟값을 원소로 포함한다.

SN, SxS,yS, s.t xyS \subset \N, \ S \ne \empty \Rightarrow \exist x \in S, \forall y \in S, \ s.t \ x \le y

Structure of Mathematical Induction

수학적 귀납법은 nn의 값에 따라 참/거짓이 달라지는 명제 p(n)p(n)이 모든 자연수에 대해 참임을 증명할 때 사용하는 증명법이다. 수학적 귀납법의 구조는 다음과 같다.

  1. (Base case) p(1)p(1)이 참임을 증명
  2. (Inductive step)  nN, p(n)p(n+1)\forall \ n \in N, \ p(n) \Rightarrow p(n+1)을 증명
[p(1) and nN, p(n)p(n+1)]nN, p(n)[p(1) \ and \ \forall n \in \N, \ p(n) \Rightarrow p(n+1)] \Rightarrow \forall n \in \N, \ p(n)

Proof of Mathematical Induction By WOP

S={np(n) is not true}Assume Base case, Inductive step, We want to show S=.We work by Contradiction.Suppose S. by WOP, xS,yS, s.t xy.By Base case, p(1) is true. Therefore 1Sx>1.Since x is the least element of S, (x1)Sp(x1) is true.By Inductive step, p(x1) is truep(x) is true.xSThis leads to a contradiction, that x is both in S and not in S.Therefore,S=.S = \{n | \text{p(n) is not true}\} \\ {} \\ \text{Assume Base case, Inductive step, We want to show } S = \empty. \\ \text{We work by Contradiction.} \\ {} \\ \text{Suppose } S \ne \empty. \ \text{by WOP, }\exist x \in S, \forall y \in S, \ s.t \ x \le y. \\ {} \\ \text{By Base case, p(1) is true. Therefore } 1 \notin S \Rightarrow x > 1. \\ \text{Since x is the least element of S, } (x-1) \notin S \Rightarrow p(x-1) \text{ is true}. \\ {} \\ \text{By Inductive step, } p(x-1) \text{ is true} \Rightarrow p(x) \text{ is true.} \Rightarrow x \notin S \\ \text{This leads to a contradiction, that x is both in S and not in S.} \\ \text{Therefore}, S = \empty.

Example of proof using Mathematical Induction

Proof if c1 then nN,(1+c)n1+ncI) Base case:For n = 1, (1+c)1=(1+1c)p(1) is trueII) Inductive Step : Suppose (1+c)n1+nc.Then for n+1, (1+c)n+1=(1+c)n(1+c).Since (1+c)0, (1+c)n1+nc(1+c)n(1+c)(1+nc)(1+c)=1+nc+c+nc21+nc+c(1+c)n+11+(n+1)cif p(n) is true, then p(n+1) is true.By principle of Induction, nN, p(n) is true.\text{Proof if } c \ge -1 \text{ then } \forall n \in \N, (1+c)^n \ge 1+nc \\ {} \\ \text{I) Base case} : \text{For n = 1, } (1+c)^1 = (1+1c) \Rightarrow \text{p(1) is true} \\ {} \\ \text{II) Inductive Step : Suppose } (1+c)^n \ge 1+nc. \\ {} \\ \text{Then for n+1, } (1+c)^{n+1} = (1+c)^n (1+c). \\ \text{Since } (1+c) \ge 0, \ (1+c)^n \ge 1+nc \Rightarrow (1+c)^n(1+c) \ge (1+nc) (1+c) \\ = 1+nc+c+nc^2 \ge 1+nc+c \\ \Rightarrow (1+c)^{n+1} \ge 1+(n+1)c \\ {} \\ \therefore \text{if p(n) is true, then p(n+1) is true.}\\ \text{By principle of Induction, } \forall n \in \N, \ p(n) \ is \ true.

0개의 댓글