Well ordering Principle
집합 S가 S⊂N, S=∅일 때, S는 최솟값을 원소로 포함한다.
S⊂N, S=∅⇒∃x∈S,∀y∈S, s.t x≤y
Structure of Mathematical Induction
수학적 귀납법은 n의 값에 따라 참/거짓이 달라지는 명제 p(n)이 모든 자연수에 대해 참임을 증명할 때 사용하는 증명법이다. 수학적 귀납법의 구조는 다음과 같다.
- (Base case) p(1)이 참임을 증명
- (Inductive step) ∀ n∈N, p(n)⇒p(n+1)을 증명
[p(1) and ∀n∈N, p(n)⇒p(n+1)]⇒∀n∈N, p(n)
Proof of Mathematical Induction By WOP
S={n∣p(n) is not true}Assume Base case, Inductive step, We want to show S=∅.We work by Contradiction.Suppose S=∅. by WOP, ∃x∈S,∀y∈S, s.t x≤y.By Base case, p(1) is true. Therefore 1∈/S⇒x>1.Since x is the least element of S, (x−1)∈/S⇒p(x−1) is true.By Inductive step, p(x−1) is true⇒p(x) is true.⇒x∈/SThis leads to a contradiction, that x is both in S and not in S.Therefore,S=∅.
Example of proof using Mathematical Induction
Proof if c≥−1 then ∀n∈N,(1+c)n≥1+ncI) Base case:For n = 1, (1+c)1=(1+1c)⇒p(1) is trueII) Inductive Step : Suppose (1+c)n≥1+nc.Then for n+1, (1+c)n+1=(1+c)n(1+c).Since (1+c)≥0, (1+c)n≥1+nc⇒(1+c)n(1+c)≥(1+nc)(1+c)=1+nc+c+nc2≥1+nc+c⇒(1+c)n+1≥1+(n+1)c∴if p(n) is true, then p(n+1) is true.By principle of Induction, ∀n∈N, p(n) is true.