통계방법론 W7

ese2o·2024년 6월 15일
0

Analysis of Variance and Design of Experiments (2)

Randomized Block Design (RBD)

CRD와 달리, 실험에서 고려되지 않은 외부요인에 의한 변동을 제어

RBD includes a second variable, referred to as a blocking variable, that can be used to control for confounding (or concomitant) variable(교란 변수)

교란변수; Confounding (concomitant) variables: variables that are not being controlled by the analyst in the experiment, but can have an effect on the outcome of the treatment being studied

Blocking variable: a variable that the analyst wants to control, but is not the treatment variable of interest

RBD: formula

SSC=nj=1C(xˉjxˉ)2SSR=Ci=1n(xˉixˉ)2SSE=i=1nj=1C(xijxˉjxˉi+xˉ)2SST=i=1nj=1C(xijxˉ)2\begin{aligned} & \mathrm{SSC}=n \sum_{j=1}^C\left(\bar{x}_j-\bar{x}\right)^2 \\ & \mathrm{SSR}=C \sum_{i=1}^n\left(\bar{x}_i-\bar{x}\right)^2 \\ & \mathrm{SSE}^{\prime}=\sum_{i=1}^n \sum_{j=1}^C\left(x_{i j}-\bar{x}_j-\bar{x}_i+\bar{x}\right)^2 \\ & \mathrm{SST}=\sum_{i=1}^n \sum_{j=1}^C\left(x_{i j}-\bar{x}\right)^2 \\ & \end{aligned}

ii : block group
jj : treatment level
nn : number of observations in each treatment level C : number of treatment levels
N=nCN = nC : total number of observations
xijx_ij : individual observation
xˉi\bar x_i : block mean
xˉj\bar x_j : treatment mean
xˉ\bar x : total mean

MSC=SSCC1MSR=SSRn1MSE=SSENnC+1\begin{aligned} \mathrm{MSC} & =\frac{S S C}{C-1} \\ \mathrm{MSR} & =\frac{S S R}{n-1} \\ \mathrm{MSE}^{\prime} & =\frac{S S E^{\prime}}{N-n-C+1} \end{aligned}
Ftreatments =MSCMSEFblocks =MSRMSE\begin{aligned} \mathrm{F}_{\text {treatments }} & =\frac{\mathrm{MSC}}{\mathrm{MSE}^{\prime}} \\ F_{\text {blocks }} & =\frac{\mathrm{MSR}}{\mathrm{MSE}^{\prime}} \end{aligned}

Step 1.

가설을 2개 세운다.

Hypothesis for the treatment effect:

  • H0H_0: the mean value is identical for different treatments
  • HaH_a: At least one of the treatment means is different from the others

Hypothesis for the blocking effect:

  • H0H_0: the mean value is identical for different blocks
  • HaH_a: At least one of the blocking means is different from the others

Step 2.

compute observed values(SSE, SSR, SST, MSE, ... formula)

Step 3.

conclude the process

1) For treatment

observed value: Ft=MSCMSEF_t=\frac{\mathrm{MSC}}{\mathrm{MSE}^{\prime}}

critical value: Fα,C1,(C1)(b1)=F0.01,2,8F_{\alpha, C-1,(C-1)(b-1)}=F_{0.01,2,8}

Because the observed value of FtF_t is greater than the critical FF value, the null hypothesis is rejected.

At least one of the population means of the treatment level is not the same as the others

2) For Blocking

observed value: Fb=MSBMSEF_b=\frac{\mathrm{MSB}}{\mathrm{MSE}^{\prime}}

critical value: Fα,b1,(C1)(b1)=F0.01,4,8F_{\alpha, b-1,(C-1)(b-1)}=F_{0.01,4,8}

Because the observed value of FbF_b is greater than the critical F value, the blocking effect is significant.

추가적으로, ANOVA table을 다음과 같이 작성할 수 있다.

blocking 없는 F value는 F=MSCMSEF=\frac{\mathrm{MSC}}{\mathrm{MSE}}로 구할 수 있다.

Two-way ANOVA

: test the effect of two independent variables (or factors) on one dependent variable

  • 예를 들어, 하나 이상의 요인(factor: 자동차 등급과 제조사)에 의해 종속변수가 결정되는 경우
  • Factorial: all possible combinations of the levels of the factors are investigated
  • interaction effect를 고려해야 한다.
  • 조건: Each sample must be i.i.d. from a normally distributed population / Each population must have the same variance

Two-way ANOVA: formula

SSR=nCi=1R(xˉixˉ)2SSC=nRj=1C(xˉjxˉ)2SSI=ni=1Rj=1C(xˉijxˉixˉj+xˉ)2SSE=i=1Rj=1Ck=1n(xijkxˉij)2SST=i=1Rj=1Ck=1n(xijkxˉ)2\begin{aligned} & \mathrm{SSR}=n C \sum_{i=1}^R\left(\bar{x}_i-\bar{x}\right)^2 \\ & \mathrm{SSC}=n R \sum_{j=1}^C\left(\bar{x}_j-\bar{x}\right)^2 \\ & \mathrm{SSI}=n \sum_{i=1}^R \sum_{j=1}^C\left(\bar{x}_{i j}-\bar{x}_i-\bar{x}_j+\bar{x}\right)^2 \\ & \mathrm{SSE}=\sum_{i=1}^R \sum_{j=1}^C \sum_{k=1}^n\left(x_{i j k}-\bar{x}_{i j}\right)^2 \\ & \mathrm{SST}=\sum_{i=1}^R \sum_{j=1}^C \sum_{k=1}^n\left(x_{i j k}-\bar{x}\right)^2 \end{aligned}

ii : row treatment level
jj : column treatment level
kk : cell member
nn : number of observations per cell
CC : number of column treatments
RR : number of row treatments
xijkx_{ijk} : individual observation
xˉij\bar x_{ij} : cell mean
xˉi\bar x_i : row mean
xˉj\bar x_j : column mean
xˉ\bar x : total mean

MSR=SSRR1MSC=SSCC1MSI=SSI(R1)(C1)MSE=SSERC(n1)\begin{aligned} & \mathrm{MSR}=\frac{S S R}{R-1} \\ & \mathrm{MSC}=\frac{S S C}{C-1} \\ & \mathrm{MSI}=\frac{S S I}{(R-1)(C-1)} \\ & \mathrm{MSE}=\frac{S S E}{R C(n-1)} \end{aligned}
FR=MSRMSEFC=MSCMSEFI=MSIMSE\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ & \mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}} \\ & \mathrm{F}_{\mathrm{I}}=\frac{\mathrm{MSI}}{\mathrm{MSE}} \end{aligned}

Two-way ANOVA: Table

ex. DATA

Step 1.

각 행/열에 대해 평균을 전부 구한다.

1) Test for interaction effect:
H0 : There is no interaction effect between Treatment 1 and Treatment 2.
Ha : There exists an interaction effect between Treatment 1 and Treatment 2.

2) Test for Treatment 1 effect:
H0 : μX=μY\mu_X = \mu_Y
Ha : At least one row mean is different.

3) Test for Treatment 2 effect:
H0 :μA=μB=μC=μD\mu_A = \mu_B = \mu_C = \mu_D
Ha : At least one column mean is different.

Step 2.

observed values(formula)를 전부 구하고 two-way anova를 작성한다.

필요한 critical values:
FR=Fα,R1,RC(n1)F_R = F_{\alpha, R-1, R C(n-1)}
FC=Fα,C1,RC(n1)F_C = F_{\alpha, C-1, R C(n-1)}
FI=Fα,(R1)(C1),RC(n1)F_I = F_{\alpha,(R-1)(C-1), R C(n-1)}

Step 3.

observed value < critical value: not significant, fail to reject H0
observed value > critical value: significant, reject H0

3개의 가설에 대해 H0 reject 할 수 있는지/ 가능하다면 significant different in means for Treatment i(또는 interaction effect) 라고 conclude한다.

0개의 댓글

관련 채용 정보