머신러닝 3

ganadara·2022년 11월 28일
1

복습

목록 보기
29/49
post-thumbnail
post-custom-banner

새싹 인공지능 응용sw 개발자 양성 교육 프로그램 심선조 강사님 수업 정리 글입니다.

오차행렬

  • 교재 150p

정밀도는 예측값 1기준으로 판단 (fp+tp) -> 분모
tp / fp + tp

재현율은 실제값 1기준으로 판단 (fn+tp) -> 분모
tp / fn + tp

정확도 = 내가 맞춘 개수 / 전체 데이터 개수

균형이 안 맞은 이진 분류일 때는 정확도가 높게 나와 정확한 판단이 어렵다. 불균형한 이진분류일 때는 혼동행렬(정밀도, 재현율)을 가지고 판단한다.

y=0, y=1 실제값, 정답, 레이블
y^=0 y^=1 예측값

재현율 = 민감도 = TPR(true positive rate)

from sklearn.base import BaseEstimator 
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.metrics import accuracy_score
import numpy as np
class MyDummyClassifier(BaseEstimator): #클래스이름 옆에 ()하면 상속이다. BaseEstimator을 상속받겠다.
    def fit(self, X, y=None):
        pass 
    
    def predict(self, X):
        pred = np.zeros((X.shape[0], 1)) #행은 데이터의 건수다. column = 레이블값 1
        for i in range(X.shape[0]): #데이터 건수(행)을 가져다가
            if X['Sex'].iloc[i] == 1: #성별이 1=남자라면
                pred[i] = 0 #결과값에 0을 넣어줘라
            else:
                pred[i] = 1
        return pred
def fillna(df):
    df['Age'].fillna(df['Age'].mean(),inplace=True)
    df['Cabin'].fillna('N',inplace=True)
    df['Embarked'].fillna('N',inplace=True)
    df['Fare'].fillna(0, inplace=True) 
    return df

def drop_features(df):
    df.drop(columns=['PassengerId', 'Name', 'Ticket'], inplace=True)
    return df

def format_features(df):
    from sklearn.preprocessing import LabelEncoder  #함수안에 같이 넣어주는 것이 좋음
    df['Cabin'] = df['Cabin'].str[:1] #Cabin의 첫 번째 글자만 추출
    features=['Sex','Cabin','Embarked']
    for feature in features:
        le = LabelEncoder()
        df[feature] = le.fit_transform(df[feature])
        print(le.classes_) #레이블인코더 확인 할 때 = class
    return df

def transform_features(df): #함수 3개 호출
    df = fillna(df) 
    df = drop_features(df)
    df = format_features(df)
    return df

df = pd.read_csv('titanic.csv')
y = df['Survived']
X = df.drop(columns=['Survived'])
X = transform_features(X)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=11)
['female' 'male']
['A' 'B' 'C' 'D' 'E' 'F' 'G' 'N' 'T']
['C' 'N' 'Q' 'S']
myclf = MyDummyClassifier()
myclf.fit(X_train,y_train)
pred = myclf.predict(X_test)
accuracy_score(y_test,pred)
0.8324022346368715
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,pred)
array([[103,  15],
       [ 15,  46]], dtype=int64)
#get_clf_eval = confusion,matrix,accuracy, precision, recall등의 평가를 한꺼번에 호출하는 함수
def get_clf_eval(y_test,pred):
    from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix
    confusion = confusion_matrix(y_test,pred)
    accuracy = accuracy_score(y_test,pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    print('오차행렬')
    print(confusion)
    print(f'정확도:{accuracy:.4f}, 정밀도:{precision:.4f}, 재현율:{recall:.4f}')

+머신러닝이나 sklearn 라이브러리에서 보이는 clf는 classifier(분류기)를 의미

  • 교재 156p
    {0} = index라 안 적어도 괜찮다. {.4f} = 소수 이하 4번째 자리까지
    f'' = python3이후 버전부터 사용가능하다.
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split # 데이터 나누닉
from sklearn.linear_model import LogisticRegression #이진분류라서 회귀모델 사용
df = pd.read_csv('titanic.csv')
y = df['Survived'] #df[] = 컬럼이름
x = df.drop(columns=['Survived']) #해당 컬럼만 제거하고 나머지 값들을 x로 가져온다. 원본에는 적용x
def fillna(df):
    df['Age'].fillna(df['Age'].mean(),inplace=True)
    df['Cabin'].fillna('N',inplace=True)
    df['Embarked'].fillna('N',inplace=True)
    df['Fare'].fillna(0, inplace=True) 
    return df

def drop_features(df):
    df.drop(columns=['PassengerId', 'Name', 'Ticket'], inplace=True)
    return df

def format_features(df):
    from sklearn.preprocessing import LabelEncoder  #함수안에 같이 넣어주는 것이 좋음
    df['Cabin'] = df['Cabin'].str[:1] #Cabin의 첫 번째 글자만 추출
    features=['Sex','Cabin','Embarked']
    for feature in features:
        le = LabelEncoder()
        df[feature] = le.fit_transform(df[feature])
        print(le.classes_) #레이블인코더 확인 할 때 = class
    return df

def transform_features(df): #함수 3개 호출
    df = fillna(df) 
    df = drop_features(df)
    df = format_features(df)
    return df
df = pd.read_csv('titanic.csv')
y = df['Survived']
X = df.drop(columns=['Survived'])
X = transform_features(X)
['female' 'male']
['A' 'B' 'C' 'D' 'E' 'F' 'G' 'N' 'T']
['C' 'N' 'Q' 'S']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=11)
lr_clf = LogisticRegression(solver='liblinear') #모델만듦
lr_clf.fit(X_train,y_train)
pred = lr_clf.predict(X_test)
get_clf_eval(y_test,pred)

+LogisticRegression 객체의 생성 인자로 입력되는 solver='liblinear'는 로지스틱 회귀의 최적화 알고리즘 유형을 지정하는 것이다. 보통 작은 데이터 세트의 이진 분류인 경우 solver는 liblinear가 약간 성능이 좋은 경향이 있다.

오차행렬
[[108  10]
 [ 14  47]]
정확도:0.8659, 정밀도:0.8246, 재현율:0.7705

정밀도/재현율 트레이드 오프

  • 교재 157p
    결정 임곗값(Threshold)을 조정해 정밀도나 재현율 수치를 높일 수 있다.
    정밀도/재현율의 트레이드오프(Trade-off)는 정밀도와 재현율은 상호 보완적인 평가 지표이기 대문에 한 쪽을 강제로 높이면 다른 수치는 떨어지는 것을 정밀도/재현율 트레이드 오프(Trade-off)라고 한다.
pred #1= 생존, 0= 사망, 1차원
array([1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
       1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
       1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
       1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
       1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
       0, 0, 1], dtype=int64)

사이킷런의 분류 알고리즘은 예측 데이터가 특정 레이블(label, 결정 클래스 값)에 속하는 지를 계산하기 위해 먼저 개별 레이블별로 결정 확률을 구한다. 그리고 예측 확률이 큰 레이블 값으로 예측하게 된다.

#predict_proba()메서드 : 개별 데이터별로 예측 확률을 반환
pred_proba = lr_clf.predict_proba(X_test)#2차원, 1개의 데이터를 통해 2개의 결과값이 나옴- 0.44935225, 0.55064775 둘다 더하면 1이 됨
# 앞(0.44935225)이 될 것은 0이 될 확률, 뒤(0.55064775)에 것은 1이 될 확율
np.concatenate([pred_proba,pred.reshape(-1,1)],axis=1) #(shift+tab) (a1, a2, ...) 튜플로 묶여 있음, The arrays must have the same shape = 같은 shape
#pred 1차원이라서 2차원을 바꿔주기 위해 reshape을 사용함 , axis=1 : 열단위로 붙여야 함
array([[0.44935225, 0.55064775, 1.        ],
       [0.86335511, 0.13664489, 0.        ],
       [0.86429643, 0.13570357, 0.        ],
       [0.84968519, 0.15031481, 0.        ],
       [0.82343409, 0.17656591, 0.        ],
       [0.84231224, 0.15768776, 0.        ],
       [0.87095489, 0.12904511, 0.        ],
       [0.27228603, 0.72771397, 1.        ],
       [0.78185128, 0.21814872, 0.        ],
       [0.33185998, 0.66814002, 1.        ],
       [0.86178763, 0.13821237, 0.        ],
       [0.87058097, 0.12941903, 0.        ],
       [0.8642595 , 0.1357405 , 0.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.56033544, 0.43966456, 0.        ],
       [0.85003022, 0.14996978, 0.        ],
       [0.88954172, 0.11045828, 0.        ],
       [0.74250732, 0.25749268, 0.        ],
       [0.71120224, 0.28879776, 0.        ],
       [0.23776278, 0.76223722, 1.        ],
       [0.75684107, 0.24315893, 0.        ],
       [0.62428169, 0.37571831, 0.        ],
       [0.84655246, 0.15344754, 0.        ],
       [0.82711256, 0.17288744, 0.        ],
       [0.86825628, 0.13174372, 0.        ],
       [0.77003828, 0.22996172, 0.        ],
       [0.82946349, 0.17053651, 0.        ],
       [0.90336131, 0.09663869, 0.        ],
       [0.73372049, 0.26627951, 0.        ],
       [0.68847387, 0.31152613, 0.        ],
       [0.07646869, 0.92353131, 1.        ],
       [0.2253212 , 0.7746788 , 1.        ],
       [0.87161939, 0.12838061, 0.        ],
       [0.24075418, 0.75924582, 1.        ],
       [0.62711731, 0.37288269, 0.        ],
       [0.77003828, 0.22996172, 0.        ],
       [0.90554276, 0.09445724, 0.        ],
       [0.40602574, 0.59397426, 1.        ],
       [0.93043584, 0.06956416, 0.        ],
       [0.8765052 , 0.1234948 , 0.        ],
       [0.69797422, 0.30202578, 0.        ],
       [0.89664595, 0.10335405, 0.        ],
       [0.21993379, 0.78006621, 1.        ],
       [0.31565713, 0.68434287, 1.        ],
       [0.37942228, 0.62057772, 1.        ],
       [0.37932891, 0.62067109, 1.        ],
       [0.07161281, 0.92838719, 1.        ],
       [0.55777586, 0.44222414, 0.        ],
       [0.07914487, 0.92085513, 1.        ],
       [0.86803082, 0.13196918, 0.        ],
       [0.50790057, 0.49209943, 0.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.85576405, 0.14423595, 0.        ],
       [0.34870129, 0.65129871, 1.        ],
       [0.71558417, 0.28441583, 0.        ],
       [0.78853206, 0.21146794, 0.        ],
       [0.7461921 , 0.2538079 , 0.        ],
       [0.86429   , 0.13571   , 0.        ],
       [0.84079003, 0.15920997, 0.        ],
       [0.59838066, 0.40161934, 0.        ],
       [0.73532081, 0.26467919, 0.        ],
       [0.88705596, 0.11294404, 0.        ],
       [0.545528  , 0.454472  , 0.        ],
       [0.55326343, 0.44673657, 0.        ],
       [0.62583522, 0.37416478, 0.        ],
       [0.88363277, 0.11636723, 0.        ],
       [0.35181256, 0.64818744, 1.        ],
       [0.39903352, 0.60096648, 1.        ],
       [0.08300815, 0.91699185, 1.        ],
       [0.85072522, 0.14927478, 0.        ],
       [0.86778819, 0.13221181, 0.        ],
       [0.83070924, 0.16929076, 0.        ],
       [0.87649042, 0.12350958, 0.        ],
       [0.05959915, 0.94040085, 1.        ],
       [0.78735759, 0.21264241, 0.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.716541  , 0.283459  , 0.        ],
       [0.79159804, 0.20840196, 0.        ],
       [0.20303098, 0.79696902, 1.        ],
       [0.86429   , 0.13571   , 0.        ],
       [0.2400505 , 0.7599495 , 1.        ],
       [0.37123587, 0.62876413, 1.        ],
       [0.08369626, 0.91630374, 1.        ],
       [0.84018612, 0.15981388, 0.        ],
       [0.07766719, 0.92233281, 1.        ],
       [0.08973248, 0.91026752, 1.        ],
       [0.84723076, 0.15276924, 0.        ],
       [0.8624153 , 0.1375847 , 0.        ],
       [0.16539734, 0.83460266, 1.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.77003828, 0.22996172, 0.        ],
       [0.75416744, 0.24583256, 0.        ],
       [0.87065944, 0.12934056, 0.        ],
       [0.37932891, 0.62067109, 1.        ],
       [0.89883889, 0.10116111, 0.        ],
       [0.07361403, 0.92638597, 1.        ],
       [0.87897226, 0.12102774, 0.        ],
       [0.60197825, 0.39802175, 0.        ],
       [0.06738996, 0.93261004, 1.        ],
       [0.47948281, 0.52051719, 1.        ],
       [0.9046927 , 0.0953073 , 0.        ],
       [0.05673721, 0.94326279, 1.        ],
       [0.88180787, 0.11819213, 0.        ],
       [0.45587969, 0.54412031, 1.        ],
       [0.86133437, 0.13866563, 0.        ],
       [0.84974929, 0.15025071, 0.        ],
       [0.85072697, 0.14927303, 0.        ],
       [0.55502751, 0.44497249, 0.        ],
       [0.88426898, 0.11573102, 0.        ],
       [0.84747418, 0.15252582, 0.        ],
       [0.87269562, 0.12730438, 0.        ],
       [0.67538692, 0.32461308, 0.        ],
       [0.48275247, 0.51724753, 1.        ],
       [0.86825628, 0.13174372, 0.        ],
       [0.9159719 , 0.0840281 , 0.        ],
       [0.84194204, 0.15805796, 0.        ],
       [0.78872838, 0.21127162, 0.        ],
       [0.11141754, 0.88858246, 1.        ],
       [0.90534855, 0.09465145, 0.        ],
       [0.87071643, 0.12928357, 0.        ],
       [0.86905438, 0.13094562, 0.        ],
       [0.91525793, 0.08474207, 0.        ],
       [0.58196827, 0.41803173, 0.        ],
       [0.98025012, 0.01974988, 0.        ],
       [0.87071643, 0.12928357, 0.        ],
       [0.87219019, 0.12780981, 0.        ],
       [0.7119464 , 0.2880536 , 0.        ],
       [0.34348899, 0.65651101, 1.        ],
       [0.70226693, 0.29773307, 0.        ],
       [0.06738996, 0.93261004, 1.        ],
       [0.59805546, 0.40194454, 0.        ],
       [0.3288534 , 0.6711466 , 1.        ],
       [0.48644765, 0.51355235, 1.        ],
       [0.42864813, 0.57135187, 1.        ],
       [0.56346572, 0.43653428, 0.        ],
       [0.25853148, 0.74146852, 1.        ],
       [0.77643225, 0.22356775, 0.        ],
       [0.87632447, 0.12367553, 0.        ],
       [0.15009277, 0.84990723, 1.        ],
       [0.13434695, 0.86565305, 1.        ],
       [0.85072697, 0.14927303, 0.        ],
       [0.86772102, 0.13227898, 0.        ],
       [0.89628756, 0.10371244, 0.        ],
       [0.88613339, 0.11386661, 0.        ],
       [0.34797639, 0.65202361, 1.        ],
       [0.89917048, 0.10082952, 0.        ],
       [0.72997342, 0.27002658, 0.        ],
       [0.12221446, 0.87778554, 1.        ],
       [0.8171969 , 0.1828031 , 0.        ],
       [0.61865112, 0.38134888, 0.        ],
       [0.37370305, 0.62629695, 1.        ],
       [0.38348341, 0.61651659, 1.        ],
       [0.86463298, 0.13536702, 0.        ],
       [0.25161298, 0.74838702, 1.        ],
       [0.10388332, 0.89611668, 1.        ],
       [0.57648057, 0.42351943, 0.        ],
       [0.85476848, 0.14523152, 0.        ],
       [0.31415125, 0.68584875, 1.        ],
       [0.33907972, 0.66092028, 1.        ],
       [0.84347719, 0.15652281, 0.        ],
       [0.23261134, 0.76738866, 1.        ],
       [0.88859273, 0.11140727, 0.        ],
       [0.35220567, 0.64779433, 1.        ],
       [0.58554858, 0.41445142, 0.        ],
       [0.36143288, 0.63856712, 1.        ],
       [0.1363406 , 0.8636594 , 1.        ],
       [0.67797005, 0.32202995, 0.        ],
       [0.88600083, 0.11399917, 0.        ],
       [0.13946115, 0.86053885, 1.        ],
       [0.87095489, 0.12904511, 0.        ],
       [0.20616022, 0.79383978, 1.        ],
       [0.76719902, 0.23280098, 0.        ],
       [0.77437244, 0.22562756, 0.        ],
       [0.50324048, 0.49675952, 0.        ],
       [0.91079838, 0.08920162, 0.        ],
       [0.84970738, 0.15029262, 0.        ],
       [0.54874087, 0.45125913, 0.        ],
       [0.48192063, 0.51807937, 1.        ]])

threshold변수를 특정 값으로 설정하고 Binarizer 클래스를 객체로 생성한다. 생성된 Binarizer 객체의 fit_transform()메서드를 이용해 넘파이 ndarray를 입력하면 입력된 ndarry의 값을 지정된 threshold보다 같거나 작으면 0값으로, 크면 1값으로 변환해 반환한다.

from sklearn.preprocessing import Binarizer #전처리
X=[[1,-1,2,],
  [2,0,0],
  [0,1.1,1.2]]
X
[[1, -1, 2], [2, 0, 0], [0, 1.1, 1.2]]
binarizer = Binarizer(threshold=1.1) #들어오는 데이터의 임계값을 설정, 기본값은 threshold=0.0 : 0까지는 0으로 나가고 0보다 크면 1로 나간다.
binarizer.fit_transform(X) #fit에서는 정보를 모은다. #(threshold=1.1) : 1.1까지는 0으로 반환, 1.1보다 크면 1로 반환
array([[0., 0., 1.],
       [1., 0., 0.],
       [0., 0., 1.]])
  • 교재 160P

LogisticRegression 객체의 predict_proba()메서드로 구한 각 클래스별 예측 확률값인 pred_proba 객체 변수에 분류 결정 임곗값(threshold)을 0.5로 지정한 Binarizer 클래스를 적용해 최종 예측값을 구함

custom_threshold=0.5
pred_proba
array([[0.44935225, 0.55064775],
       [0.86335511, 0.13664489],
       [0.86429643, 0.13570357],
       [0.84968519, 0.15031481],
       [0.82343409, 0.17656591],
       [0.84231224, 0.15768776],
       [0.87095489, 0.12904511],
       [0.27228603, 0.72771397],
       [0.78185128, 0.21814872],
       [0.33185998, 0.66814002],
       [0.86178763, 0.13821237],
       [0.87058097, 0.12941903],
       [0.8642595 , 0.1357405 ],
       [0.87065944, 0.12934056],
       [0.56033544, 0.43966456],
       [0.85003022, 0.14996978],
       [0.88954172, 0.11045828],
       [0.74250732, 0.25749268],
       [0.71120224, 0.28879776],
       [0.23776278, 0.76223722],
       [0.75684107, 0.24315893],
       [0.62428169, 0.37571831],
       [0.84655246, 0.15344754],
       [0.82711256, 0.17288744],
       [0.86825628, 0.13174372],
       [0.77003828, 0.22996172],
       [0.82946349, 0.17053651],
       [0.90336131, 0.09663869],
       [0.73372049, 0.26627951],
       [0.68847387, 0.31152613],
       [0.07646869, 0.92353131],
       [0.2253212 , 0.7746788 ],
       [0.87161939, 0.12838061],
       [0.24075418, 0.75924582],
       [0.62711731, 0.37288269],
       [0.77003828, 0.22996172],
       [0.90554276, 0.09445724],
       [0.40602574, 0.59397426],
       [0.93043584, 0.06956416],
       [0.8765052 , 0.1234948 ],
       [0.69797422, 0.30202578],
       [0.89664595, 0.10335405],
       [0.21993379, 0.78006621],
       [0.31565713, 0.68434287],
       [0.37942228, 0.62057772],
       [0.37932891, 0.62067109],
       [0.07161281, 0.92838719],
       [0.55777586, 0.44222414],
       [0.07914487, 0.92085513],
       [0.86803082, 0.13196918],
       [0.50790057, 0.49209943],
       [0.87065944, 0.12934056],
       [0.85576405, 0.14423595],
       [0.34870129, 0.65129871],
       [0.71558417, 0.28441583],
       [0.78853206, 0.21146794],
       [0.7461921 , 0.2538079 ],
       [0.86429   , 0.13571   ],
       [0.84079003, 0.15920997],
       [0.59838066, 0.40161934],
       [0.73532081, 0.26467919],
       [0.88705596, 0.11294404],
       [0.545528  , 0.454472  ],
       [0.55326343, 0.44673657],
       [0.62583522, 0.37416478],
       [0.88363277, 0.11636723],
       [0.35181256, 0.64818744],
       [0.39903352, 0.60096648],
       [0.08300815, 0.91699185],
       [0.85072522, 0.14927478],
       [0.86778819, 0.13221181],
       [0.83070924, 0.16929076],
       [0.87649042, 0.12350958],
       [0.05959915, 0.94040085],
       [0.78735759, 0.21264241],
       [0.87065944, 0.12934056],
       [0.716541  , 0.283459  ],
       [0.79159804, 0.20840196],
       [0.20303098, 0.79696902],
       [0.86429   , 0.13571   ],
       [0.2400505 , 0.7599495 ],
       [0.37123587, 0.62876413],
       [0.08369626, 0.91630374],
       [0.84018612, 0.15981388],
       [0.07766719, 0.92233281],
       [0.08973248, 0.91026752],
       [0.84723076, 0.15276924],
       [0.8624153 , 0.1375847 ],
       [0.16539734, 0.83460266],
       [0.87065944, 0.12934056],
       [0.87065944, 0.12934056],
       [0.77003828, 0.22996172],
       [0.75416744, 0.24583256],
       [0.87065944, 0.12934056],
       [0.37932891, 0.62067109],
       [0.89883889, 0.10116111],
       [0.07361403, 0.92638597],
       [0.87897226, 0.12102774],
       [0.60197825, 0.39802175],
       [0.06738996, 0.93261004],
       [0.47948281, 0.52051719],
       [0.9046927 , 0.0953073 ],
       [0.05673721, 0.94326279],
       [0.88180787, 0.11819213],
       [0.45587969, 0.54412031],
       [0.86133437, 0.13866563],
       [0.84974929, 0.15025071],
       [0.85072697, 0.14927303],
       [0.55502751, 0.44497249],
       [0.88426898, 0.11573102],
       [0.84747418, 0.15252582],
       [0.87269562, 0.12730438],
       [0.67538692, 0.32461308],
       [0.48275247, 0.51724753],
       [0.86825628, 0.13174372],
       [0.9159719 , 0.0840281 ],
       [0.84194204, 0.15805796],
       [0.78872838, 0.21127162],
       [0.11141754, 0.88858246],
       [0.90534855, 0.09465145],
       [0.87071643, 0.12928357],
       [0.86905438, 0.13094562],
       [0.91525793, 0.08474207],
       [0.58196827, 0.41803173],
       [0.98025012, 0.01974988],
       [0.87071643, 0.12928357],
       [0.87219019, 0.12780981],
       [0.7119464 , 0.2880536 ],
       [0.34348899, 0.65651101],
       [0.70226693, 0.29773307],
       [0.06738996, 0.93261004],
       [0.59805546, 0.40194454],
       [0.3288534 , 0.6711466 ],
       [0.48644765, 0.51355235],
       [0.42864813, 0.57135187],
       [0.56346572, 0.43653428],
       [0.25853148, 0.74146852],
       [0.77643225, 0.22356775],
       [0.87632447, 0.12367553],
       [0.15009277, 0.84990723],
       [0.13434695, 0.86565305],
       [0.85072697, 0.14927303],
       [0.86772102, 0.13227898],
       [0.89628756, 0.10371244],
       [0.88613339, 0.11386661],
       [0.34797639, 0.65202361],
       [0.89917048, 0.10082952],
       [0.72997342, 0.27002658],
       [0.12221446, 0.87778554],
       [0.8171969 , 0.1828031 ],
       [0.61865112, 0.38134888],
       [0.37370305, 0.62629695],
       [0.38348341, 0.61651659],
       [0.86463298, 0.13536702],
       [0.25161298, 0.74838702],
       [0.10388332, 0.89611668],
       [0.57648057, 0.42351943],
       [0.85476848, 0.14523152],
       [0.31415125, 0.68584875],
       [0.33907972, 0.66092028],
       [0.84347719, 0.15652281],
       [0.23261134, 0.76738866],
       [0.88859273, 0.11140727],
       [0.35220567, 0.64779433],
       [0.58554858, 0.41445142],
       [0.36143288, 0.63856712],
       [0.1363406 , 0.8636594 ],
       [0.67797005, 0.32202995],
       [0.88600083, 0.11399917],
       [0.13946115, 0.86053885],
       [0.87095489, 0.12904511],
       [0.20616022, 0.79383978],
       [0.76719902, 0.23280098],
       [0.77437244, 0.22562756],
       [0.50324048, 0.49675952],
       [0.91079838, 0.08920162],
       [0.84970738, 0.15029262],
       [0.54874087, 0.45125913],
       [0.48192063, 0.51807937]])
pred_proba[:,1]# : = 전부가져오기, 1 = 뒤에있는 것만 가져오기
#2차원으로 바꿔야 함, 한 행에 한 건 -> reshape(-1, 1)
array([0.55064775, 0.13664489, 0.13570357, 0.15031481, 0.17656591,
       0.15768776, 0.12904511, 0.72771397, 0.21814872, 0.66814002,
       0.13821237, 0.12941903, 0.1357405 , 0.12934056, 0.43966456,
       0.14996978, 0.11045828, 0.25749268, 0.28879776, 0.76223722,
       0.24315893, 0.37571831, 0.15344754, 0.17288744, 0.13174372,
       0.22996172, 0.17053651, 0.09663869, 0.26627951, 0.31152613,
       0.92353131, 0.7746788 , 0.12838061, 0.75924582, 0.37288269,
       0.22996172, 0.09445724, 0.59397426, 0.06956416, 0.1234948 ,
       0.30202578, 0.10335405, 0.78006621, 0.68434287, 0.62057772,
       0.62067109, 0.92838719, 0.44222414, 0.92085513, 0.13196918,
       0.49209943, 0.12934056, 0.14423595, 0.65129871, 0.28441583,
       0.21146794, 0.2538079 , 0.13571   , 0.15920997, 0.40161934,
       0.26467919, 0.11294404, 0.454472  , 0.44673657, 0.37416478,
       0.11636723, 0.64818744, 0.60096648, 0.91699185, 0.14927478,
       0.13221181, 0.16929076, 0.12350958, 0.94040085, 0.21264241,
       0.12934056, 0.283459  , 0.20840196, 0.79696902, 0.13571   ,
       0.7599495 , 0.62876413, 0.91630374, 0.15981388, 0.92233281,
       0.91026752, 0.15276924, 0.1375847 , 0.83460266, 0.12934056,
       0.12934056, 0.22996172, 0.24583256, 0.12934056, 0.62067109,
       0.10116111, 0.92638597, 0.12102774, 0.39802175, 0.93261004,
       0.52051719, 0.0953073 , 0.94326279, 0.11819213, 0.54412031,
       0.13866563, 0.15025071, 0.14927303, 0.44497249, 0.11573102,
       0.15252582, 0.12730438, 0.32461308, 0.51724753, 0.13174372,
       0.0840281 , 0.15805796, 0.21127162, 0.88858246, 0.09465145,
       0.12928357, 0.13094562, 0.08474207, 0.41803173, 0.01974988,
       0.12928357, 0.12780981, 0.2880536 , 0.65651101, 0.29773307,
       0.93261004, 0.40194454, 0.6711466 , 0.51355235, 0.57135187,
       0.43653428, 0.74146852, 0.22356775, 0.12367553, 0.84990723,
       0.86565305, 0.14927303, 0.13227898, 0.10371244, 0.11386661,
       0.65202361, 0.10082952, 0.27002658, 0.87778554, 0.1828031 ,
       0.38134888, 0.62629695, 0.61651659, 0.13536702, 0.74838702,
       0.89611668, 0.42351943, 0.14523152, 0.68584875, 0.66092028,
       0.15652281, 0.76738866, 0.11140727, 0.64779433, 0.41445142,
       0.63856712, 0.8636594 , 0.32202995, 0.11399917, 0.86053885,
       0.12904511, 0.79383978, 0.23280098, 0.22562756, 0.49675952,
       0.08920162, 0.15029262, 0.45125913, 0.51807937])
pred_proba_1 = pred_proba[:,1].reshape(-1,1)
pred_proba_1
array([[0.55064775],
       [0.13664489],
       [0.13570357],
       [0.15031481],
       [0.17656591],
       [0.15768776],
       [0.12904511],
       [0.72771397],
       [0.21814872],
       [0.66814002],
       [0.13821237],
       [0.12941903],
       [0.1357405 ],
       [0.12934056],
       [0.43966456],
       [0.14996978],
       [0.11045828],
       [0.25749268],
       [0.28879776],
       [0.76223722],
       [0.24315893],
       [0.37571831],
       [0.15344754],
       [0.17288744],
       [0.13174372],
       [0.22996172],
       [0.17053651],
       [0.09663869],
       [0.26627951],
       [0.31152613],
       [0.92353131],
       [0.7746788 ],
       [0.12838061],
       [0.75924582],
       [0.37288269],
       [0.22996172],
       [0.09445724],
       [0.59397426],
       [0.06956416],
       [0.1234948 ],
       [0.30202578],
       [0.10335405],
       [0.78006621],
       [0.68434287],
       [0.62057772],
       [0.62067109],
       [0.92838719],
       [0.44222414],
       [0.92085513],
       [0.13196918],
       [0.49209943],
       [0.12934056],
       [0.14423595],
       [0.65129871],
       [0.28441583],
       [0.21146794],
       [0.2538079 ],
       [0.13571   ],
       [0.15920997],
       [0.40161934],
       [0.26467919],
       [0.11294404],
       [0.454472  ],
       [0.44673657],
       [0.37416478],
       [0.11636723],
       [0.64818744],
       [0.60096648],
       [0.91699185],
       [0.14927478],
       [0.13221181],
       [0.16929076],
       [0.12350958],
       [0.94040085],
       [0.21264241],
       [0.12934056],
       [0.283459  ],
       [0.20840196],
       [0.79696902],
       [0.13571   ],
       [0.7599495 ],
       [0.62876413],
       [0.91630374],
       [0.15981388],
       [0.92233281],
       [0.91026752],
       [0.15276924],
       [0.1375847 ],
       [0.83460266],
       [0.12934056],
       [0.12934056],
       [0.22996172],
       [0.24583256],
       [0.12934056],
       [0.62067109],
       [0.10116111],
       [0.92638597],
       [0.12102774],
       [0.39802175],
       [0.93261004],
       [0.52051719],
       [0.0953073 ],
       [0.94326279],
       [0.11819213],
       [0.54412031],
       [0.13866563],
       [0.15025071],
       [0.14927303],
       [0.44497249],
       [0.11573102],
       [0.15252582],
       [0.12730438],
       [0.32461308],
       [0.51724753],
       [0.13174372],
       [0.0840281 ],
       [0.15805796],
       [0.21127162],
       [0.88858246],
       [0.09465145],
       [0.12928357],
       [0.13094562],
       [0.08474207],
       [0.41803173],
       [0.01974988],
       [0.12928357],
       [0.12780981],
       [0.2880536 ],
       [0.65651101],
       [0.29773307],
       [0.93261004],
       [0.40194454],
       [0.6711466 ],
       [0.51355235],
       [0.57135187],
       [0.43653428],
       [0.74146852],
       [0.22356775],
       [0.12367553],
       [0.84990723],
       [0.86565305],
       [0.14927303],
       [0.13227898],
       [0.10371244],
       [0.11386661],
       [0.65202361],
       [0.10082952],
       [0.27002658],
       [0.87778554],
       [0.1828031 ],
       [0.38134888],
       [0.62629695],
       [0.61651659],
       [0.13536702],
       [0.74838702],
       [0.89611668],
       [0.42351943],
       [0.14523152],
       [0.68584875],
       [0.66092028],
       [0.15652281],
       [0.76738866],
       [0.11140727],
       [0.64779433],
       [0.41445142],
       [0.63856712],
       [0.8636594 ],
       [0.32202995],
       [0.11399917],
       [0.86053885],
       [0.12904511],
       [0.79383978],
       [0.23280098],
       [0.22562756],
       [0.49675952],
       [0.08920162],
       [0.15029262],
       [0.45125913],
       [0.51807937]])
custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
#Binarizer(threshold=custom_threshold) = 임계값 0.5
#fit_transform(pred_proba_1) = 1일될 확률값
# 오차행렬
# [[108  10]
#  [ 14  47]]
# 정확도:0.8659, 정밀도:0.8246, 재현율:0.7705
get_clf_eval(y_test,custom_predict) #임계값 0.5 확인
오차행렬
[[108  10]
 [ 14  47]]
정확도:0.8659, 정밀도:0.8246, 재현율:0.7705
custom_threshold = 0.4
custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
get_clf_eval(y_test,custom_predict) #임계값 0.4 -> 정확도, 정밀도 떨어짐↓ 재현율은 올라감↑
오차행렬
[[97 21]
 [11 50]]
정확도:0.8212, 정밀도:0.7042, 재현율:0.8197
custom_threshold = 0.6
custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
get_clf_eval(y_test,custom_predict) #정확도, 정밀도 올라감↑ 재현율 내려감↓
오차행렬
[[113   5]
 [ 17  44]]
정확도:0.8771, 정밀도:0.8980, 재현율:0.7213
thresholds = [0.4,0.45,0.5,0.55,0.6]
def get_eval_by_threshold(y_test,pred_proba_1,thresholds):
    for custom_threshold in thresholds:
        custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
        get_clf_eval(y_test,custom_predict)
get_eval_by_threshold(y_test,pred_proba_1,thresholds)
오차행렬
[[97 21]
 [11 50]]
정확도:0.8212, 정밀도:0.7042, 재현율:0.8197
오차행렬
[[105  13]
 [ 13  48]]
정확도:0.8547, 정밀도:0.7869, 재현율:0.7869
오차행렬
[[108  10]
 [ 14  47]]
정확도:0.8659, 정밀도:0.8246, 재현율:0.7705
오차행렬
[[111   7]
 [ 16  45]]
정확도:0.8715, 정밀도:0.8654, 재현율:0.7377
오차행렬
[[113   5]
 [ 17  44]]
정확도:0.8771, 정밀도:0.8980, 재현율:0.7213
  • 교재 157p
    output 잘못됨(임계치=0.5)

실습한 데이터가 맞음
[[108 10][ 14 47]]
정확도:0.8659, 정밀도:0.8246, 재현율:0.7705

그래프에서 크로스되는 지점을 임계점으로 정한다.

precision_recall_curve()

임계값이 변하면 precision, recall값이 어떻게 변하는 지 보여줌

precision_recall_curve()의 인자로 실제 값 데이터 세트와 레이블 값이 1일 때의 예측 확률 값을 입력한다. 레이블 값이 1일 때의 예측 확률은 predict_proba(X_test)[:,1]로 predict_proba()의 반환 ndarray의 두 번째 칼럼(즉, 칼럼 인덱스 1)값에 해당하는 데이터 세트이다. precision_recall_curve()는 일반적으로 0.11~0.95 정도의 임곗값을 담은 넘파이 ndarray와 이 임곗값에 해당하는 정밀도 및 재현율 값을 담은 넘파이 ndarray를 반환한다.

from sklearn.metrics import precision_recall_curve
#레이블 값이 1일 때의 예측 확률을 추출
precision_recall_curve(y_test,pred_proba_1) #y_true = y_test 결과값, probas_pred = 예측확률, pred_proba_1: 1에 대한 확률 값
#결과값 (array( : (로 시작된다는 것은 튜플이라는 뜻
(array([0.37888199, 0.375     , 0.37735849, 0.37974684, 0.38216561,
        0.37820513, 0.38064516, 0.38311688, 0.38562092, 0.38815789,
        0.39072848, 0.39597315, 0.40136054, 0.41843972, 0.42142857,
        0.42446043, 0.43065693, 0.43382353, 0.43703704, 0.44029851,
        0.44360902, 0.4469697 , 0.44615385, 0.4496124 , 0.4453125 ,
        0.44094488, 0.44444444, 0.44      , 0.44354839, 0.44715447,
        0.45454545, 0.45833333, 0.46218487, 0.46610169, 0.47008547,
        0.47413793, 0.47826087, 0.48245614, 0.48672566, 0.49107143,
        0.4954955 , 0.5       , 0.50458716, 0.50925926, 0.51401869,
        0.51886792, 0.52380952, 0.52884615, 0.53398058, 0.53921569,
        0.54455446, 0.55      , 0.55555556, 0.56122449, 0.56701031,
        0.57291667, 0.59139785, 0.59782609, 0.6043956 , 0.61111111,
        0.61797753, 0.625     , 0.63218391, 0.63953488, 0.64705882,
        0.64285714, 0.65060241, 0.65853659, 0.66666667, 0.675     ,
        0.6835443 , 0.69230769, 0.68831169, 0.68421053, 0.68      ,
        0.67567568, 0.68493151, 0.69444444, 0.70422535, 0.71428571,
        0.71014493, 0.72058824, 0.73134328, 0.74242424, 0.75384615,
        0.765625  , 0.76190476, 0.77419355, 0.78688525, 0.8       ,
        0.79661017, 0.81034483, 0.8245614 , 0.83928571, 0.83636364,
        0.83333333, 0.8490566 , 0.86538462, 0.8627451 , 0.88      ,
        0.89795918, 0.89583333, 0.91489362, 0.93478261, 0.93181818,
        0.93023256, 0.92857143, 0.95121951, 0.95      , 0.94871795,
        0.94736842, 0.94594595, 0.94444444, 0.94285714, 0.94117647,
        0.93939394, 0.9375    , 0.96774194, 0.96666667, 0.96551724,
        0.96428571, 0.96296296, 0.96153846, 0.96      , 0.95833333,
        0.95652174, 0.95454545, 0.95238095, 0.95      , 0.94736842,
        0.94444444, 0.94117647, 0.9375    , 1.        , 1.        ,
        1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        ]),
 array([1.        , 0.98360656, 0.98360656, 0.98360656, 0.98360656,
        0.96721311, 0.96721311, 0.96721311, 0.96721311, 0.96721311,
        0.96721311, 0.96721311, 0.96721311, 0.96721311, 0.96721311,
        0.96721311, 0.96721311, 0.96721311, 0.96721311, 0.96721311,
        0.96721311, 0.96721311, 0.95081967, 0.95081967, 0.93442623,
        0.91803279, 0.91803279, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.90163934, 0.90163934,
        0.8852459 , 0.8852459 , 0.8852459 , 0.8852459 , 0.8852459 ,
        0.8852459 , 0.8852459 , 0.86885246, 0.85245902, 0.83606557,
        0.81967213, 0.81967213, 0.81967213, 0.81967213, 0.81967213,
        0.80327869, 0.80327869, 0.80327869, 0.80327869, 0.80327869,
        0.80327869, 0.78688525, 0.78688525, 0.78688525, 0.78688525,
        0.7704918 , 0.7704918 , 0.7704918 , 0.7704918 , 0.75409836,
        0.73770492, 0.73770492, 0.73770492, 0.72131148, 0.72131148,
        0.72131148, 0.70491803, 0.70491803, 0.70491803, 0.67213115,
        0.6557377 , 0.63934426, 0.63934426, 0.62295082, 0.60655738,
        0.59016393, 0.57377049, 0.55737705, 0.54098361, 0.52459016,
        0.50819672, 0.49180328, 0.49180328, 0.47540984, 0.45901639,
        0.44262295, 0.42622951, 0.40983607, 0.39344262, 0.37704918,
        0.36065574, 0.3442623 , 0.32786885, 0.31147541, 0.29508197,
        0.27868852, 0.26229508, 0.24590164, 0.24590164, 0.2295082 ,
        0.21311475, 0.19672131, 0.18032787, 0.16393443, 0.14754098,
        0.13114754, 0.1147541 , 0.09836066, 0.08196721, 0.06557377,
        0.03278689, 0.01639344, 0.        ]),
 array([0.11573102, 0.11636723, 0.11819213, 0.12102774, 0.1234948 ,
        0.12350958, 0.12367553, 0.12730438, 0.12780981, 0.12838061,
        0.12904511, 0.12928357, 0.12934056, 0.12941903, 0.13094562,
        0.13174372, 0.13196918, 0.13221181, 0.13227898, 0.13536702,
        0.13570357, 0.13571   , 0.1357405 , 0.13664489, 0.1375847 ,
        0.13821237, 0.13866563, 0.14423595, 0.14523152, 0.14927303,
        0.14927478, 0.14996978, 0.15025071, 0.15029262, 0.15031481,
        0.15252582, 0.15276924, 0.15344754, 0.15652281, 0.15768776,
        0.15805796, 0.15920997, 0.15981388, 0.16929076, 0.17053651,
        0.17288744, 0.17656591, 0.1828031 , 0.20840196, 0.21127162,
        0.21146794, 0.21264241, 0.21814872, 0.22356775, 0.22562756,
        0.22996172, 0.23280098, 0.24315893, 0.24583256, 0.2538079 ,
        0.25749268, 0.26467919, 0.26627951, 0.27002658, 0.283459  ,
        0.28441583, 0.2880536 , 0.28879776, 0.29773307, 0.30202578,
        0.31152613, 0.32202995, 0.32461308, 0.37288269, 0.37416478,
        0.37571831, 0.38134888, 0.39802175, 0.40161934, 0.40194454,
        0.41445142, 0.41803173, 0.42351943, 0.43653428, 0.43966456,
        0.44222414, 0.44497249, 0.44673657, 0.45125913, 0.454472  ,
        0.49209943, 0.49675952, 0.51355235, 0.51724753, 0.51807937,
        0.52051719, 0.54412031, 0.55064775, 0.57135187, 0.59397426,
        0.60096648, 0.61651659, 0.62057772, 0.62067109, 0.62629695,
        0.62876413, 0.63856712, 0.64779433, 0.64818744, 0.65129871,
        0.65202361, 0.65651101, 0.66092028, 0.66814002, 0.6711466 ,
        0.68434287, 0.68584875, 0.72771397, 0.74146852, 0.74838702,
        0.75924582, 0.7599495 , 0.76223722, 0.76738866, 0.7746788 ,
        0.78006621, 0.79383978, 0.79696902, 0.83460266, 0.84990723,
        0.86053885, 0.8636594 , 0.86565305, 0.87778554, 0.88858246,
        0.89611668, 0.91026752, 0.91630374, 0.91699185, 0.92085513,
        0.92233281, 0.92353131, 0.92638597, 0.92838719, 0.93261004,
        0.94040085, 0.94326279]))
  • precision_recall_curve()

Returns
precision(정밀도) : ndarray of shape (n_thresholds + 1,)
Precision values such that element i is the precision of
predictions with score >= thresholds[i] and the last element is 1.

recall(재현율) : ndarray of shape (n_thresholds + 1,)
Decreasing recall values such that element i is the recall of
predictions with score >= thresholds[i] and the last element is 0.

thresholds(임곗값) : ndarray of shape (n_thresholds,)
Increasing thresholds on the decision function used to compute
precision and recall. n_thresholds <= len(np.unique(probas_pred)).

임계값을 키우면 정밀도(precision)는 커진다. 그래서 결과값이 0 -> 1로 점점 커진다.
임계값이 낮으면 재현율(recall)이 커진다. 그래서 결과값이 1 -> 0으로 작아진다.
임계값(0.11573102)으로 시작한다.

#실제값 데이터 세트와 레이블 값이 1일 때의 예측 확률을 precision_recall_curve 인자로 입력
precisions, recalls, thresholds = precision_recall_curve(y_test,pred_proba_1)
#precision : ndarray of shape (n_thresholds + 1,)?
precisions.shape, recalls.shape, thresholds.shape 
((148,), (148,), (147,))
#반환된 임계값 배열 로우가 147건이므로 샘플로 10건만 추출하되, 임곗값을 15 step으로 추출
thr_index = np.arange(0,thresholds.shape[0], 15) #(0,thresholds.shape[0]) = 0~146 차례대로 값을 가져온다.
#(0,thresholds.shape[0], 15) = 15개씩 건너서 값을 가져온다
#15 = step
thr_index #위치값, 눈으로 확인하기 위해서 10개만 뽑음
array([  0,  15,  30,  45,  60,  75,  90, 105, 120, 135])
thresholds[thr_index]#index위치의 임계값을 가져온다. np.round = 반올림
array([0.11573102, 0.13174372, 0.14927478, 0.17288744, 0.25749268,
       0.37571831, 0.49209943, 0.62876413, 0.75924582, 0.89611668])
np.round(thresholds[thr_index],2) #index위치의 임계값을 가져온다. np.round = 반올림
array([0.12, 0.13, 0.15, 0.17, 0.26, 0.38, 0.49, 0.63, 0.76, 0.9 ])
np.round(precisions[thr_index],3)
array([0.379, 0.424, 0.455, 0.519, 0.618, 0.676, 0.797, 0.93 , 0.964,
       1.   ])
np.round(recalls[thr_index], 3)
array([1.   , 0.967, 0.902, 0.902, 0.902, 0.82 , 0.77 , 0.656, 0.443,
       0.213])
import matplotlib.pyplot as plt
def precision_recall_curve_plot(y_test,pred_proba_1):
    from sklearn.metrics import precision_recall_curve
    import matplotlib.pyplot as plt
    precisions, recalls, thresholds = precision_recall_curve(y_test,pred_proba_1)
    plt.figure(figsize=(8,6)) #틀의 비율 정해줌
    threshold_boundary=thresholds.shape[0] #thresholds.shape[0]의 전체갯수(147)가 threshold_boundary가 들어감
    plt.plot(thresholds, precisions[0:threshold_boundary],linestyle='--',label='precision') #x축에 임계값 , y축에 recall, precision
    #thresholds(148개), precisions(147개) 둘의 갯수가 안 맞아서
    #precisions[0:thresholds_boundary] 0~147 = 148개로 맞춰줌
    plt.plot(thresholds, recalls[0:threshold_boundary],label='recall')
    start,end = plt.xlim() #x축의 시작값, 끝나는 값 지정
    plt.xticks(np.round(np.arange(start,end,0.1),2)) #arange=range #step을 0.1씩 눈금을 만들었다.
    plt.xlabel('임계값') #x축제목
    plt.ylabel('정밀도와 재현율') #y축제목
    plt.legend() #범례
    plt.grid() #눈금선
    plt.show()
precision_recall_curve_plot(y_test,pred_proba_1)

정밀도와 재현율가 밸런스가 맞는 지점 = 0.45

정밀도와 재현율의 맹점

  • 교재 165p

정밀도와 재현율의 수치가 상호 보완할 수 있는 수준에서 적용돼어야 한다.

F1스코어

정밀도와 재현율을 결합한 지표이다.
정밀도와 재현율이 어느 한쪽으로 치우치지 않는 수치를 나타낼 때 상대적으로 높은 값을 가진다.

from sklearn.metrics import f1_score
f1_score(y_test,pred) # y_true : 정답,y_pred : 예측값 넣어주기
0.7966101694915254
def get_clf_eval(y_test,pred):
    from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,f1_score
    confusion = confusion_matrix(y_test,pred)
    accuracy = accuracy_score(y_test,pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    f1 = f1_score(y_test,pred)
    print('오차행렬')
    print(confusion)
    print(f'정확도:{accuracy:.4f}, 정밀도:{precision:.4f}, 재현율:{recall:.4f}, F1:{f1:.4f}')

thresholds = [0.4,0.45,0.5,0.55,0.6]
def get_eval_by_threshold(y_test,pred_proba_1,thresholds):
    for custom_threshold in thresholds:
        custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
        print(f'임계값:{custom_threshold}')
        get_clf_eval(y_test,custom_predict)
get_eval_by_threshold(y_test,pred_proba_1,thresholds)
임계값:0.4
오차행렬
[[97 21]
 [11 50]]
정확도:0.8212, 정밀도:0.7042, 재현율:0.8197, F1:0.7576
임계값:0.45
오차행렬
[[105  13]
 [ 13  48]]
정확도:0.8547, 정밀도:0.7869, 재현율:0.7869, F1:0.7869
임계값:0.5
오차행렬
[[108  10]
 [ 14  47]]
정확도:0.8659, 정밀도:0.8246, 재현율:0.7705, F1:0.7966
임계값:0.55
오차행렬
[[111   7]
 [ 16  45]]
정확도:0.8715, 정밀도:0.8654, 재현율:0.7377, F1:0.7965
임계값:0.6
오차행렬
[[113   5]
 [ 17  44]]
정확도:0.8771, 정밀도:0.8980, 재현율:0.7213, F1:0.8000

쓰는 것은 사용하는 사람 마음이다.
본인이 어떻게 사용할 지 결정해야 한다.

ROC 곡선과 AUC

-교재 167P

ROC곡선의 아래쪽 면접의 값을 구한 값 = AUC
AUC는 1에 가까울수록 좋다.

재현율 = 민감도 = TPR

ROC곡선은 FPT이 변할 때 TPR(=recall)이 어떻게 변하는 지를 나타내는 곡선이다.
x축의 변화에 따른 y축의 변화

TNR= 특이성
TNR = TN / (FP+TN)

FPR = FP / (FP+FN) = 1 - TNR = 1 - 특이성

혼동행렬을 기반으로 한다.

-교재 169p
curve()는 그래프로 만들 수 있는 수치로 만들어 준다.

from sklearn.metrics import roc_curve
roc_curve(y_test,pred_proba_1)
(array([0.        , 0.        , 0.        , 0.        , 0.        ,
        0.00847458, 0.00847458, 0.01694915, 0.01694915, 0.02542373,
        0.02542373, 0.02542373, 0.04237288, 0.04237288, 0.05932203,
        0.05932203, 0.07627119, 0.07627119, 0.10169492, 0.10169492,
        0.12711864, 0.12711864, 0.16949153, 0.16949153, 0.20338983,
        0.20338983, 0.25423729, 0.25423729, 0.3220339 , 0.34745763,
        0.55932203, 0.57627119, 0.59322034, 0.59322034, 0.60169492,
        0.60169492, 0.61016949, 0.61864407, 0.66101695, 0.6779661 ,
        0.69491525, 0.74576271, 0.77966102, 0.8220339 , 0.8220339 ,
        0.84745763, 0.84745763, 1.        ]),
 array([0.        , 0.01639344, 0.03278689, 0.06557377, 0.24590164,
        0.24590164, 0.49180328, 0.49180328, 0.63934426, 0.63934426,
        0.67213115, 0.70491803, 0.70491803, 0.72131148, 0.72131148,
        0.73770492, 0.73770492, 0.7704918 , 0.7704918 , 0.78688525,
        0.78688525, 0.80327869, 0.80327869, 0.81967213, 0.81967213,
        0.8852459 , 0.8852459 , 0.90163934, 0.90163934, 0.90163934,
        0.90163934, 0.90163934, 0.90163934, 0.91803279, 0.91803279,
        0.95081967, 0.95081967, 0.96721311, 0.96721311, 0.96721311,
        0.96721311, 0.96721311, 0.96721311, 0.96721311, 0.98360656,
        0.98360656, 1.        , 1.        ]),
 array([1.94326279, 0.94326279, 0.94040085, 0.93261004, 0.87778554,
        0.86565305, 0.72771397, 0.68584875, 0.64779433, 0.63856712,
        0.62629695, 0.62067109, 0.61651659, 0.60096648, 0.57135187,
        0.55064775, 0.52051719, 0.51724753, 0.49209943, 0.454472  ,
        0.44497249, 0.44222414, 0.41445142, 0.40194454, 0.37571831,
        0.32202995, 0.28441583, 0.283459  , 0.23280098, 0.22996172,
        0.14927478, 0.14927303, 0.14423595, 0.13866563, 0.13821237,
        0.13664489, 0.1357405 , 0.13571   , 0.13196918, 0.13174372,
        0.12941903, 0.12934056, 0.12904511, 0.12350958, 0.1234948 ,
        0.11636723, 0.11573102, 0.01974988]))
  • roc_curve()

Returns
fpr : ndarray of shape (>2,) #x축
Increasing false positive rates such that element i is the false
positive rate of predictions with score >= thresholds[i].

tpr : ndarray of shape (>2,) #y축, 민감도
Increasing true positive rates such that element i is the true
positive rate of predictions with score >= thresholds[i].

thresholds : ndarray of shape = (n_thresholds,)
Decreasing thresholds on the decision function used to compute
fpr and tpr. thresholds[0] represents no instances being predicted
and is arbitrarily set to max(y_score) + 1.

def roc_curve_plot(y_test,pred_proba_1):
    from sklearn.metrics import roc_curve
    import matplotlib.pyplot as plt
    fprs, tprs, thresholds = roc_curve(y_test,pred_proba_1)
    plt.plot(fprs,tprs,label='ROC') #x축 = fprs, y축 = tprs
    plt.plot([0,1],[0,1], 'k--', label='Random') #x = [0,1],y = [0,1] , 50%되는 지점, 'k--' = 검은색 점선으로 표시해라
    plt.legend()
    plt.show()
roc_curve_plot(y_test,pred_proba_1)

  • 교재 171p
    일반적으로 ROC 곡선은 FPR, TPR의 변화 값을 보는데 이용한다.
    AUC 값은 ROC곡선 밑의 면적으로 구한 것으로서 일반적으로 1에 가까울수록 좋다.
    보통의 경우 0.5이상의 AUC값을 가진다.
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test,pred_proba_1) #1인확률
0.8986524034454015

평가지표를 살펴봄. 이 모델이 쓸만 한지 평가지표
정확도만 가지고는 불균형한 이진분류에서 평가가 힘들어서
혼동행렬을 만들어서 정밀도, 재현율, f1스코드 등등 같이 본다
무조건 확인해야 하는 것이 아닌 상황에 따라서 확인한다.

def get_clf_eval(y_test,pred):
    from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,f1_score,roc_auc_score
    confusion = confusion_matrix(y_test,pred)
    accuracy = accuracy_score(y_test,pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    f1 = f1_score(y_test,pred)
    auc = roc_auc_score(y_test,pred_proba_1)
    print('오차행렬')
    print(confusion)
    print(f'정확도:{accuracy:.4f}, 정밀도:{precision:.4f}, 재현율:{recall:.4f}, F1:{f1:.4f}, AUC:{auc:.4f}')

-교재 172p

피마 인디언 당뇨병 예측

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
예측 변수(입력값)와 하나의 대상 변수(결과값, 레이블값)

당뇨병 원인으로 식습관과 유전을 꼽는다.
pima 인디원 데이터로 식습관의 영향을 살펴볼 수 있다.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
df = pd.read_csv('diabetes.csv') #DiabetesPedigreeFunction 유전(가중치), outcome(레이블값) 
df.sample(3)
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
732 2 174 88 37 120 44.5 0.646 24 1
738 2 99 60 17 160 36.6 0.453 21 0
260 3 191 68 15 130 30.9 0.299 34 0
df.info() #768 non-null = null값은 없다 , 모두 숫자형 -> 별도의 피처 인코딩 불필요
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   Pregnancies               768 non-null    int64  
 1   Glucose                   768 non-null    int64  
 2   BloodPressure             768 non-null    int64  
 3   SkinThickness             768 non-null    int64  
 4   Insulin                   768 non-null    int64  
 5   BMI                       768 non-null    float64
 6   DiabetesPedigreeFunction  768 non-null    float64
 7   Age                       768 non-null    int64  
 8   Outcome                   768 non-null    int64  
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
df.Outcome.value_counts() #유일값뽑고 몇 개씩있는지 
0    500
1    268
Name: Outcome, dtype: int64
X = df.drop(columns=['Outcome'])#outcom빼고 다 넣으면 된다. iloc, drop 써도 됨, 실제 데이터는 영향x
y = df.Outcome
X
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32
3 1 89 66 23 94 28.1 0.167 21
4 0 137 40 35 168 43.1 2.288 33
... ... ... ... ... ... ... ... ...
763 10 101 76 48 180 32.9 0.171 63
764 2 122 70 27 0 36.8 0.340 27
765 5 121 72 23 112 26.2 0.245 30
766 1 126 60 0 0 30.1 0.349 47
767 1 93 70 31 0 30.4 0.315 23

768 rows × 8 columns

y
0      1
1      0
2      1
3      0
4      1
      ..
763    0
764    0
765    0
766    1
767    0
Name: Outcome, Length: 768, dtype: int64
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=156,stratify=y)
lr_clf = LogisticRegression(solver='liblinear')    #모델만듦
lr_clf.fit(X_train,y_train)
pred = lr_clf.predict(X_test)
pred_proba = lr_clf.predict_proba(X_test)[:,1]

#stratify 교차검증할 때 비율따질 때
0 500
1 268
Name: Outcome, dtype: int64
비율이 불균형하다 -> 데이터를 나눌 때 비율이 불균형하면 성능이 좋지 않다.
-> 비율을 따져서 나눠야 한다. -> y값을 봐야 한다.
stratify=y 원래 데이터 비율에 맞춰서 데이터를 분류한다.

def get_clf_eval(y_test,pred,pred_proba_1): #(y_test,pred) 지역변수 pred = 결정값,pred_proba_1=확률값?
    from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,f1_score,roc_auc_score
    confusion = confusion_matrix(y_test,pred)
    accuracy = accuracy_score(y_test,pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    f1 = f1_score(y_test,pred)
    auc = roc_auc_score(y_test,pred_proba_1)
    print('오차행렬')
    print(confusion)
    print(f'정확도:{accuracy:.4f}, 정밀도:{precision:.4f}, 재현율:{recall:.4f}, F1:{f1:.4f}, AUC:{auc:.4f}')

def precision_recall_curve_plot(y_test,pred_proba_1):
    from sklearn.metrics import precision_recall_curve
    import matplotlib.pyplot as plt
    precisions, recalls, thresholds = precision_recall_curve(y_test,pred_proba_1)
    plt.figure(figsize=(8,6)) 
    threshold_boundary=thresholds.shape[0] 
    plt.plot(thresholds, precisions[0:threshold_boundary],linestyle='--',label='precision') 
    plt.plot(thresholds, recalls[0:threshold_boundary],label='recall')
    start,end = plt.xlim() 
    plt.xticks(np.round(np.arange(start,end,0.1),2)) 
    plt.xlabel('임계값') 
    plt.ylabel('정밀도와 재현율') 
    plt.legend() 
    plt.grid() 
    plt.show()
get_clf_eval(y_test,pred,pred_proba)
오차행렬
[[87 13]
 [22 32]]
정확도:0.7727, 정밀도:0.7111, 재현율:0.5926, F1:0.6465, AUC:0.8083

오차행렬
[[87 13][22 32]]
정확도:0.7727, 정밀도:0.7111, 재현율:0.5926, F1:0.6465, AUC:0.8083
정확도,정밀도는 높은데 재현율이 너무 낮다.
둘다 적절하게 높아야 f1스코어가 올라간다.

  • 교재 175p
    정밀도 재현율 곡선을 보고 임곗값별 정밀도와 재현율 값의 변화를 확인
precision_recall_curve_plot(y_test,pred_proba)
C:\anaconda\lib\site-packages\IPython\core\pylabtools.py:151: UserWarning: Glyph 8722 (\N{MINUS SIGN}) missing from current font.
  fig.canvas.print_figure(bytes_io, **kw)

df.describe() #describe() 수치값 count, mean, std 등등 확인 
#Glucose(포도당수치) 0이 될 수 없다.(잘못된 값)
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000
mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.078000 21.000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 0.243750 24.000000 0.000000
50% 3.000000 117.000000 72.000000 23.000000 30.500000 32.000000 0.372500 29.000000 0.000000
75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 0.626250 41.000000 1.000000
max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 2.420000 81.000000 1.000000
  • 교재 176p
    잘못된 데이터 값 처리
    히스토그램을 그려서 분포를 확인
plt.hist(df.Glucose,bins=100) #기본적으로 막대의 개수(bins)는 10이다.
(array([ 5.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
         0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,
         0.,  0.,  3.,  0.,  1.,  1.,  1.,  1.,  3.,  4.,  4.,  6.,  4.,
         7., 12.,  9., 17., 10., 15., 20., 16., 20., 17., 20., 26., 22.,
        19., 25., 25., 20., 18., 21., 18., 17., 17., 21., 25., 14., 25.,
        12., 10., 10., 16., 13., 10., 11., 12., 16.,  5.,  9.,  6., 11.,
         5., 10.,  4.,  9.,  7.,  6.,  5.,  5.,  7.,  4.,  3.,  6., 10.,
         4.,  3.,  5.,  6.,  2.,  2.,  5.,  7.,  2.]),
 array([  0.  ,   1.99,   3.98,   5.97,   7.96,   9.95,  11.94,  13.93,
         15.92,  17.91,  19.9 ,  21.89,  23.88,  25.87,  27.86,  29.85,
         31.84,  33.83,  35.82,  37.81,  39.8 ,  41.79,  43.78,  45.77,
         47.76,  49.75,  51.74,  53.73,  55.72,  57.71,  59.7 ,  61.69,
         63.68,  65.67,  67.66,  69.65,  71.64,  73.63,  75.62,  77.61,
         79.6 ,  81.59,  83.58,  85.57,  87.56,  89.55,  91.54,  93.53,
         95.52,  97.51,  99.5 , 101.49, 103.48, 105.47, 107.46, 109.45,
        111.44, 113.43, 115.42, 117.41, 119.4 , 121.39, 123.38, 125.37,
        127.36, 129.35, 131.34, 133.33, 135.32, 137.31, 139.3 , 141.29,
        143.28, 145.27, 147.26, 149.25, 151.24, 153.23, 155.22, 157.21,
        159.2 , 161.19, 163.18, 165.17, 167.16, 169.15, 171.14, 173.13,
        175.12, 177.11, 179.1 , 181.09, 183.08, 185.07, 187.06, 189.05,
        191.04, 193.03, 195.02, 197.01, 199.  ]),
 <BarContainer object of 100 artists>)

  • 교재 177p
df.columns
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
zero_features = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin','BMI']
total_count = df['Glucose'].count()
for feature in zero_features:
    zero_count = df[df[feature]==0][feature].count() #true인 것만 갯수를 셈
    print(f'{feature}컬럼의 0의 건수는 {zero_count}건 퍼센트는 {100*zero_count/total_count}%')
Glucose컬럼의 0의 건수는 5건 퍼센트는 0.6510416666666666%
BloodPressure컬럼의 0의 건수는 35건 퍼센트는 4.557291666666667%
SkinThickness컬럼의 0의 건수는 227건 퍼센트는 29.557291666666668%
Insulin컬럼의 0의 건수는 374건 퍼센트는 48.697916666666664%
BMI컬럼의 0의 건수는 11건 퍼센트는 1.4322916666666667%
mean_zero_features = df[zero_features].mean() #zero_features의 평균
df[zero_features] = df[zero_features].replace(0,mean_zero_features) #해당 컬럼값을 0을 평균값으로 대체한다.
for feature in zero_features:
    zero_count = df[df[feature]==0][feature].count() #true인 것만 갯수를 셈
    print(f'{feature}컬럼의 0의 건수는 {zero_count}건 퍼센트는 {100*zero_count/total_count}%')
Glucose컬럼의 0의 건수는 0건 퍼센트는 0.0%
BloodPressure컬럼의 0의 건수는 0건 퍼센트는 0.0%
SkinThickness컬럼의 0의 건수는 0건 퍼센트는 0.0%
Insulin컬럼의 0의 건수는 0건 퍼센트는 0.0%
BMI컬럼의 0의 건수는 0건 퍼센트는 0.0%

minmax는 0~1사이 값으로 지정
standardscale 평균 0, 분산 1으로 바꿔준다. 가우시안 정규분포 비슷하게 바꿔준다.
하는 이유 : 데이터 값들이 범위가 제각각일 때 등등

X = df.drop(columns=['Outcome']) #모델만들고 학습
y = df.Outcome
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X) #원본 놔두고 따른 곳에 저장
X_train,X_test,y_train,t_test = train_test_split(X_scaled,y,test_size=0.2,random_state=156,stratify=y)
lr_clf = LogisticRegression(solver='liblinear')  
lr_clf.fit(X_train,y_train)
pred = lr_clf.predict(X_test)
pred_proba = lr_clf.predict_proba(X_test)[:,1]
get_clf_eval(y_test,pred,pred_proba)
# 오차행렬
# [[87 13]
#  [22 32]]
# 정확도:0.7727, 정밀도:0.7111, 재현율:0.5926, F1:0.6465, AUC:0.8083
오차행렬
[[90 10]
 [21 33]]
정확도:0.7987, 정밀도:0.7674, 재현율:0.6111, F1:0.6804, AUC:0.8433
thresholds = [0.3,0.33,0.36,0.39,0.42,0.45,0.48,0.5]
def get_eval_by_threshold(y_test,pred_proba_1,thresholds):
    from sklearn.preprocessing import Binarizer
    for custom_threshold in thresholds:
        custom_predict = Binarizer(threshold=custom_threshold).fit_transform(pred_proba_1) 
        print(f'임계값:{custom_threshold}')
        get_clf_eval(y_test,custom_predict,pred_proba_1) #인자값이 하나 늘어났다는 것이 무슨뜻? -> 3개가 들어가야 한다.
        #y_test = 정답 ,custom_predict = Binarizer으로 조정한 값,pred_proba_1 = 확률값
get_eval_by_threshold(y_test,pred_proba.reshape(-1,1),thresholds)
임계값:0.3
오차행렬
[[65 35]
 [11 43]]
정확도:0.7013, 정밀도:0.5513, 재현율:0.7963, F1:0.6515, AUC:0.8433
임계값:0.33
오차행렬
[[71 29]
 [11 43]]
정확도:0.7403, 정밀도:0.5972, 재현율:0.7963, F1:0.6825, AUC:0.8433
임계값:0.36
오차행렬
[[76 24]
 [15 39]]
정확도:0.7468, 정밀도:0.6190, 재현율:0.7222, F1:0.6667, AUC:0.8433
임계값:0.39
오차행렬
[[78 22]
 [16 38]]
정확도:0.7532, 정밀도:0.6333, 재현율:0.7037, F1:0.6667, AUC:0.8433
임계값:0.42
오차행렬
[[84 16]
 [18 36]]
정확도:0.7792, 정밀도:0.6923, 재현율:0.6667, F1:0.6792, AUC:0.8433
임계값:0.45
오차행렬
[[85 15]
 [18 36]]
정확도:0.7857, 정밀도:0.7059, 재현율:0.6667, F1:0.6857, AUC:0.8433
임계값:0.48
오차행렬
[[88 12]
 [19 35]]
정확도:0.7987, 정밀도:0.7447, 재현율:0.6481, F1:0.6931, AUC:0.8433
임계값:0.5
오차행렬
[[90 10]
 [21 33]]
정확도:0.7987, 정밀도:0.7674, 재현율:0.6111, F1:0.6804, AUC:0.8433

2~3장에서 모델을 학습시켜서 사용, 전처리하는 과정, 모델학습시키고 평가를 배웠다.

profile
DL 공부중
post-custom-banner

0개의 댓글