[Linear Algebra] Another Derivation of Normal Equation

Jason Lee·2022년 9월 21일
0

Linear Algebra

목록 보기
24/26
post-custom-banner

Another Derivation of Normal Equation

  • x^=argminxbAx\hat{\textbf{x}} = \underset{\textbf{x}}{\textrm{argmin}}\begin{Vmatrix} \textbf{b} - A \textbf{x} \end{Vmatrix}
    =argminxbAx2= \underset{\textbf{x}}{\textrm{argmin}}\begin{Vmatrix} \textbf{b} - A \textbf{x} \end{Vmatrix}^2
    =argminx(bAx)T(bAx)= \underset{\textbf{x}}{\textrm{argmin}}\begin{pmatrix} \textbf{b} - A \textbf{x} \end{pmatrix}^T \begin{pmatrix} \textbf{b} - A \textbf{x} \end{pmatrix}
    =argminx(bbTxTATbbTAx+xTATAx)= \underset{\textbf{x}}{\textrm{argmin}}\begin{pmatrix} \textbf{b} \textbf{b}^T - \textbf{x}^T A^T \textbf{b} - \textbf{b}^T A \textbf{x} + \textbf{x}^T A^T A \textbf{x} \end{pmatrix}
  • Computing derivatives of (bbTxTATbbTAx+xTATAx)\begin{pmatrix} \textbf{b} \textbf{b}^T - \textbf{x}^T A^T \textbf{b} - \textbf{b}^T A \textbf{x} + \textbf{x}^T A^T A \textbf{x} \end{pmatrix} w.r.t. x\textbf{x},
    we obtain ATbATb+ATAx+ATAx=0ATAx=ATb- A^T \textbf{b} - A^T \textbf{b} + A^T A \textbf{x} + A^T A \textbf{x} = \textbf{0} \Leftrightarrow A^T A \textbf{x} = A^T \textbf{b}

    • if C=ATAC = A^T A is invertible, then the solution is computed as x=(ATA)1ATb\textbf{x} = (A^T A)^{-1} A^T \textbf{b}
profile
AI Researcher
post-custom-banner

0개의 댓글