[Linear Algebra] Normal Equation

Jason Lee·2022년 9월 19일
0

Linear Algebra

목록 보기
23/26
post-custom-banner

Normal Equation

  • Given a least square problem AxbA \textbf{x} \simeq \textbf{b}, we obtain

    • AT(bAx^)=0A^T (\textbf{b} - A \hat{\textbf{x}}) = \textbf{0}
    • ATAx^=ATbA^T A \hat{\textbf{x}} = A^T \textbf{b}, which is called the normal equation
  • This can be viewed as a new linear system Cx^=dC \hat{\textbf{x}} = \textbf{d}, where a square matrix C=ATARn×nC = A^T A \in \mathbb{R}^{n \times n}, and d=ATbRn\textbf{d} = A^T \textbf{b} \in \mathbb{R}^n

    • if C=ATAC = A^T A is invertible, then the solution is computed as x^=(ATA)1ATb\hat{\textbf{x}} = \begin{pmatrix} A^T A \end{pmatrix}^{-1} A^T \textbf{b}
profile
AI Researcher
post-custom-banner

0개의 댓글