[Linear Algebra] Four Views of Matrix Multiplication

Jason Lee·2022년 8월 6일
0

Linear Algebra

목록 보기
10/26
post-custom-banner

1. Matrix Multiplications as Linear Combinations of Vector

  • Inspired by the vector equation, we can view AxA\textbf{x} as a linear combination of columns of the left matrix

e.g.

[221310131][x1x2x3]=Ax=[a1a2a3][x1x2x3]=a1x1+a2x2+a3x3\begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A\textbf{x} = \begin{bmatrix} \textbf{a}_1 & \textbf{a}_2 & \textbf{a}_3 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \textbf{a}_1 x_1 + \textbf{a}_2 x_2 + \textbf{a}_3 x_3

2. Matrix Multiplications as Column Combinations

  • Linear combinations of columns
    • left matrix : bases
    • right matrix : coefficients

e.g.

[221310131][123456]=[x1y1x2y2x3y3]=[xy]\begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix} = \begin{bmatrix} \textbf{x} & \textbf{y} \\ \end{bmatrix}

x=[231]1+[213]3+[101]5\textbf{x} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ \end{bmatrix} 1 + \begin{bmatrix} 2 \\ 1 \\ 3 \\ \end{bmatrix} 3 + \begin{bmatrix} 1 \\ 0 \\ 1 \\ \end{bmatrix} 5

y=[231]2+[213]4+[101]6\textbf{y} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ \end{bmatrix} 2 + \begin{bmatrix} 2 \\ 1 \\ 3 \\ \end{bmatrix} 4 + \begin{bmatrix} 1 \\ 0 \\ 1 \\ \end{bmatrix} 6

3. Matrix Multiplications as Row Combinations

  • Linear combinations of rows of the right matrix
    • right matrix : bases
    • left matrix : coefficients

e.g.

[123456][221310131]=[x1x2x3y1y2y3]=[xTyT]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ \end{bmatrix} = \begin{bmatrix} \textbf{x}^T \\ \textbf{y}^T \\ \end{bmatrix}

xT=[221]T1+[310]T2+[131]T3\textbf{x}^T = \begin{bmatrix} 2 \\ 2 \\ 1 \\ \end{bmatrix}^T 1 + \begin{bmatrix} 3 \\ 1 \\ 0 \\ \end{bmatrix}^T 2 + \begin{bmatrix} 1 \\ 3 \\ 1 \\ \end{bmatrix}^T 3

yT=[221]T4+[310]T5+[131]T6\textbf{y}^T = \begin{bmatrix} 2 \\ 2 \\ 1 \\ \end{bmatrix}^T 4 + \begin{bmatrix} 3 \\ 1 \\ 0 \\ \end{bmatrix}^T 5 + \begin{bmatrix} 1 \\ 3 \\ 1 \\ \end{bmatrix}^T 6

4. Matrix Multiplications as Sum of (Rank-1) Outer Products

  • (Rank-1) outer product

    e.g.

    [111][123]=[123123123]\begin{bmatrix} 1 \\ 1 \\ 1\end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ \end{bmatrix}

  • Sum of (Rank-1) outer products

    e.g.

    [111213][123456]=[111][123]+[123][456]\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}

  • Sum of (Rank-1) outer products is widely used in machine learning

    • covariance matrix in multivariate Gaussian
    • gram matrix in style transfer
profile
AI Researcher
post-custom-banner

0개의 댓글