1. Matrix Multiplications as Linear Combinations of Vector
- Inspired by the vector equation, we can view Ax as a linear combination of columns of the left matrix
e.g.
⎣⎢⎡231213101⎦⎥⎤⎣⎢⎡x1x2x3⎦⎥⎤=Ax=[a1a2a3]⎣⎢⎡x1x2x3⎦⎥⎤=a1x1+a2x2+a3x3
2. Matrix Multiplications as Column Combinations
- Linear combinations of columns
- left matrix : bases
- right matrix : coefficients
e.g.
⎣⎢⎡231213101⎦⎥⎤⎣⎢⎡135246⎦⎥⎤=⎣⎢⎡x1x2x3y1y2y3⎦⎥⎤=[xy]
x=⎣⎢⎡231⎦⎥⎤1+⎣⎢⎡213⎦⎥⎤3+⎣⎢⎡101⎦⎥⎤5
y=⎣⎢⎡231⎦⎥⎤2+⎣⎢⎡213⎦⎥⎤4+⎣⎢⎡101⎦⎥⎤6
3. Matrix Multiplications as Row Combinations
- Linear combinations of rows of the right matrix
- right matrix : bases
- left matrix : coefficients
e.g.
[142536]⎣⎢⎡231213101⎦⎥⎤=[x1y1x2y2x3y3]=[xTyT]
xT=⎣⎢⎡221⎦⎥⎤T1+⎣⎢⎡310⎦⎥⎤T2+⎣⎢⎡131⎦⎥⎤T3
yT=⎣⎢⎡221⎦⎥⎤T4+⎣⎢⎡310⎦⎥⎤T5+⎣⎢⎡131⎦⎥⎤T6
4. Matrix Multiplications as Sum of (Rank-1) Outer Products