[Linear Algebra] Geometric Span Vector Equation

Jason Lee·2022년 8월 6일
0

Linear Algebra

목록 보기
9/26
post-custom-banner

Geometric Description of Span

e.g.

if v1\textbf{v}_1 and v2\textbf{v}_2 are nonzero vectors in R3\mathbb{R}^{3}, with v2\textbf{v}_2 not a multiple of v1\textbf{v}_1

then Span{v1,v2}\textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 \end{Bmatrix} is the plane in R3\mathbb{R}^{3} that contains v1,v2\textbf{v}_1, \textbf{v}_2 and 0\textbf{0}

Geometric Interpretation of Vector Equation

  • Finding a linear combination of given vectors a1,a2,\textbf{a}_1, \textbf{a}_2, and a3\textbf{a}_3 to be equal to b\textbf{b}
  • The solution exists only when bSpan{a1,a2,a3}\textbf{b} \in \textrm{Span}\begin{Bmatrix} \textbf{a}_1, \textbf{a}_2, \textbf{a}_3 \end{Bmatrix}

e.g.
2x1+2x2+1x3=62 x_1 + 2 x_2 + 1 x_3 = 6
3x1+1x2+0x3=143 x_1 + 1 x_2 + 0 x_3 = 14
1x1+3x2+1x3=181 x_1 + 3 x_2 + 1 x_3 = 18

[231]x1+[213]x2+[101]x3=[61418]\begin{bmatrix} 2\\ 3\\ 1\end{bmatrix} x_1 + \begin{bmatrix} 2\\ 1\\ 3\end{bmatrix} x_2 + \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix} x_3 = \begin{bmatrix} 6\\ 14\\ 18\end{bmatrix}

if [61418]Span{[231],[213],[101]}\begin{bmatrix} 6\\ 14\\ 18\end{bmatrix} \in \textrm{Span}\begin{Bmatrix} \begin{bmatrix} 2\\ 3\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 3\end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix} \end{Bmatrix}, then solution exist

profile
AI Researcher
post-custom-banner

0개의 댓글