[Linear Algebra] Geometric Understanding of Linear Dependence

Jason Lee·2022년 8월 12일
0

Linear Algebra

목록 보기
12/26
post-custom-banner

Geometric Understanding of Linear Dependence

e.g.

Given two vectors v1\textbf{v}_1 and v2\textbf{v}_2, suppose Span{v1,v2}\textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 \end{Bmatrix} is the plane below

if the third vector xSpan{v1,v2}\textbf{x} \in \textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 \end{Bmatrix}, then the vector x\textbf{x} is linearly dependent of v1\textbf{v}_1 and v2\textbf{v}_2

Linear Dependence

A linear dependent vector does not increase Span\textrm{Span}

If v3Span{v1,v2}\textbf{v}_3 \in \textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 \end{Bmatrix}, then Span{v1,v2}=Span{v1,v2,v3}\textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 \end{Bmatrix} = \textrm{Span}\begin{Bmatrix} \textbf{v}_1, \textbf{v}_2 , \textbf{v}_3 \end{Bmatrix}

Linear Dependence and Linear System Solution

A linearly dependent set produces multiple possible linear combinations of a given vector

profile
AI Researcher
post-custom-banner

0개의 댓글