[Linear Algebra] Linear Combination, Vector Equation, Span

Jason Lee·2022년 8월 6일
0

Linear Algebra

목록 보기
8/26
post-custom-banner

Linear Combinations

Given vectors v1,v2,,vp\textbf{v}_1, \textbf{v}_2, \cdots, \textbf{v}_p in Rn\mathbb{R}^{n} and given scalars c1,c2,,cpc_1, c_2, \cdots, c_p

c1v1++cpvpc_1 \textbf{v}_1 + \cdots + c_p \textbf{v}_p

is called a linear combination of v1,,vp\textbf{v}_1, \cdots, \textbf{v}_p with weights or coefficients c1,c2,,cpc_1, c_2, \cdots, c_p

The weights in a linear combination can be any real numbers, including zero

From Matrix Equation to Vector Equation

  • A matrix equation can be converted into a vector equation

e.g.
2x1+2x2+1x3=62 x_1 + 2 x_2 + 1 x_3 = 6
3x1+1x2+0x3=143 x_1 + 1 x_2 + 0 x_3 = 14
1x1+3x2+1x3=181 x_1 + 3 x_2 + 1 x_3 = 18

[221310131][x1x2x3]=[61418]\begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 3 & 1 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \\ 18 \end{bmatrix}

[231]x1+[213]x2+[101]x3=[61418]\begin{bmatrix} 2\\ 3\\ 1\end{bmatrix} x_1 + \begin{bmatrix} 2\\ 1\\ 3\end{bmatrix} x_2 + \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix} x_3 = \begin{bmatrix} 6\\ 14\\ 18\end{bmatrix}

Span

Definition : given a set of vectors v1,,vpRn\textbf{v}_1, \cdots, \textbf{v}_p \in \mathbb{R}^{n}, Span{v1,,vp}\textrm{Span} \begin{Bmatrix} \textbf{v}_1, \cdots, \textbf{v}_p \end{Bmatrix} is defined as the set of all linear combinations of v1,,vp\textbf{v}_1, \cdots, \textbf{v}_p

Span{v1,,vp}=c1v1+c2v2+cpvp\textrm{Span} \begin{Bmatrix} \textbf{v}_1, \cdots, \textbf{v}_p \end{Bmatrix} = c_1 \textbf{v}_1 + c_2 \textbf{v}_2 + \cdots c_p \textbf{v}_p with arbitrary scalars c1,,cpc_1, \cdots, c_p

Span{v1,,vp}\textrm{Span} \begin{Bmatrix} \textbf{v}_1, \cdots, \textbf{v}_p \end{Bmatrix} is also called the subset of Rn\mathbb{R}^{n} spanned by v1,,vp\textbf{v}_1, \cdots, \textbf{v}_p

profile
AI Researcher
post-custom-banner

0개의 댓글