[Linear Algebra] Vector Norm, Orthogonal Vectors

Jason Lee·2022년 9월 18일
0

Linear Algebra

목록 보기
20/26
post-custom-banner

Vector Norm

  • For vRn\textbf{v} \in \mathbb{R}^n with entries v1,,vnv_1, \cdots, v_n, the square root of vv\textbf{v} \cdot \textbf{v} is defined because vv\textbf{v} \cdot \textbf{v} is non-negative
  • The length (or norm) of v\textbf{v} is the non-negative scalar v\begin{Vmatrix} \textbf{v} \end{Vmatrix} defined as the square root of vv\textbf{v} \cdot \textbf{v}
    • v=vv=v12+v22++vn2\begin{Vmatrix} \textbf{v} \end{Vmatrix} = \sqrt{\textbf{v} \cdot \textbf{v}} = \sqrt{v^{2}_{1} + v^{2}_{2} + \cdots + v^{2}_{n}} and v2=vv\begin{Vmatrix} \textbf{v} \end{Vmatrix}^2 = \textbf{v} \cdot \textbf{v}

Geometric Meaning of Vector Norm

  • v\begin{Vmatrix} \textbf{v} \end{Vmatrix} is the length of the line segment from the origin to v\textbf{v}
  • For any scalar cc, the length cvc\textbf{v} is c\begin{vmatrix} c \end{vmatrix} times the length of v\textbf{v}
    • cv=cv\begin{Vmatrix} c\textbf{v} \end{Vmatrix} = \begin{vmatrix} c \end{vmatrix} \begin{Vmatrix} \textbf{v} \end{Vmatrix}

Unit Vector

  • A vector whose length is 1 is called a unit vector
  • Normalizing a vector : given a non-zero vector v\textbf{v}, divide it by its length and we obtain a unit vector u=1vv\textbf{u} = \frac{1}{\begin{Vmatrix} \textbf{v} \end{Vmatrix}} \textbf{v}
    • u\textbf{u} is in the same direction as v\textbf{v}, but its length is 1

Distance between Vectors in Rn\mathbb{R}^n

  • Definition : for u\textbf{u} and v\textbf{v} in Rn\mathbb{R}^n, the distance between u\textbf{u} and v\textbf{v}, written as dist(u,v)\textrm{dist}(\textbf{u}, \textbf{v}), is the length of the vector uv\textbf{u} - \textbf{v}
    • dist(u,v)=uv\textrm{dist}(\textbf{u}, \textbf{v}) = \begin{Vmatrix} \textbf{u} - \textbf{v} \end{Vmatrix}
  • The distance from u\textbf{u} to v\textbf{v} is the same as the distance from uv\textbf{u} - \textbf{v} to 0\textbf{0}

Inner Product and Angle between Vectors

  • Inner product between u\textbf{u} and v\textbf{v} can be rewritten using their norms and angle
    • uv=uvcosθ\textbf{u} \cdot \textbf{v} = \begin{Vmatrix} \textbf{u} \end{Vmatrix} \begin{Vmatrix} \textbf{v} \end{Vmatrix} \textrm{cos} \theta

Orthogonal Vectors

  • Definition : uRn\textbf{u} \in \mathbb{R}^n and vRn\textbf{v} \in \mathbb{R}^n are orthogonal (to each other) if uv=0\textbf{u} \cdot \textbf{v} = 0
    • That is, uv=uvcosθ=0\textbf{u} \cdot \textbf{v} = \begin{Vmatrix} \textbf{u} \end{Vmatrix} \begin{Vmatrix} \textbf{v} \end{Vmatrix} \textrm{cos} \theta = 0
    • u\textbf{u} and v\textbf{v} are perpendicular each other
profile
AI Researcher
post-custom-banner

0개의 댓글