[Linear Algebra] Least Squares Problem

Jason Lee·2022년 9월 18일
0

Linear Algebra

목록 보기
21/26
post-custom-banner

Least Squares Problem

  • Sum of squared errors : bAx\begin{Vmatrix} \textbf{b} - A\textbf{x} \end{Vmatrix}
  • Definition : given an overdetermined system AxbA\textbf{x} \simeq \textbf{b} where ARm×n,xRm,bRnA \in \mathbb{R}^{m \times n}, \textbf{x} \in \mathbb{R}^{m}, \textbf{b} \in \mathbb{R}^{n} and mnm \gg n, a lest squares solution x^\hat{\textbf{x}} is defined as x^=argminxbAx\hat{\textbf{x}} = \underset{\textbf{x}}{\textrm{argmin}} \begin{Vmatrix} \textbf{b} - A\textbf{x} \end{Vmatrix}
  • The most important aspect of the least-squares problem is that no matter what x\textbf{x} we select, the vector AxA \textbf{x} will necessarily be in the column space ColA\textrm{Col} A
  • Thus, we seek for x\textbf{x} that makes AxA \textbf{x} as the closest point in ColA\textrm{Col} A to b\textbf{b}
profile
AI Researcher
post-custom-banner

0개의 댓글