Analyze how the default practice datasets are organized using keys.
Keys
Keys are normally composed of data, target, target_name, feature_names & DESCR
Input
import sklearn
from sklearn.datasets import load_iris
iris_data = load_iris()
print(type(iris_data))
Output
<class 'sklearn.utils.Bunch'>
Input
keys = iris_data.keys()
print('Keys of Iris Data : ', keys)
Ouput
Keys of Iris Data : dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
Input
print('Type of Feature Names : ', type(iris_data.feature_names))
print('Shape of Feature Names : ', len(iris_data.feature_names))
print(iris_data.feature_names)
print('\n Type of Target Names : ', type(iris_data.target_names))
print('Shape of Target Names : ', len(iris_data.target_names))
print(iris_data.target_names)
print('\n Type of Data : ', type(iris_data.data))
print('Shape of Data : ', iris_data.data.shape)
print(iris_data['data'][:5]) #print first five feature data
print('Type of Target Data : ', type(iris_data.target))
print('Shape of Target Data : ', iris_data.target.shape)
print(iris_data.target)
Output
Type of Feature Names : <class 'list'>
Shape of Feature Names : 4
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Type of Target Names : <class 'numpy.ndarray'>
Shape of Target Names : 3
['setosa' 'versicolor' 'virginica']
Type of Data : <class 'numpy.ndarray'>
Shape of Data : (150, 4)
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]]
Type of Target Data : <class 'numpy.ndarray'>
Shape of Target Data : (150,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]