Machine Learning

1.Introducing Scikit-Learn

post-thumbnail

2.Dissecting the Practice Dataset

post-thumbnail

3.Importance of Splitting Train & Test Set

post-thumbnail

4.Cross Validation in Scikit-Learn

post-thumbnail

5.Data Preprocessing in Scikit-Learn

post-thumbnail

6.Feature Scaling in Scikit Learn

post-thumbnail

7.Using Scikit-Learn to Predict Titanic Survivors

post-thumbnail

8.Evaluation Metrics in Machine Learning - Accuracy

post-thumbnail

9.Evaluation Metrics in Machine Learning - Confusion Matrix

post-thumbnail

10.Evaluation Metrics in Machine Learning - Precision / Recall

post-thumbnail

11.Evaluation Metrics in Machine Learning - F1 Score

post-thumbnail

12.Evaluation Metrics in Machine Learning - ROC / AUC

post-thumbnail

13.Classification in Machine Learning - Decision Tree

post-thumbnail

14.Decision Tree to Classify Human Activity

post-thumbnail

15.Ensemble Learning : Voting and Bagging

post-thumbnail