최소 비용 중에서도, 주어진 두 노드(시작노드 , 도착노드) 사이의 최소 비용인 경로를 찾을 때 유용하게 사용된다.
- 시작 노드와 직접적으로 연결된 모든 정점들의 거리를 비교해서 업데이트 시켜주고, 시작 노드를 방문한 노드로 체크한다.
- 방문한 정점들과 연결되어 있는 정점들 중, 비용이 가장 적게 드는 정점을 선택하고, 해당 정점을 방문한 정점으로 선택해준다.
- 2번 과정에 의해서 갱신될 수 있는 정점들의 거리를 갱신시켜준다.
- 2 ~ 3번 과정을 반복한다.
위의 상황에서 X가 -5보다 작다면 위의 상황에서 B로 가는데 최소 비용이 '5' 라고 단정지을 수 없게 된다.
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
visited[now] = True
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
- 총 O(V) 번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색해야 한다
- 따라서 전체 시간 복잡도는 O(V²) 이다
- 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수가 5,000개 이하라면 이 코드로 문제를
해결할 수 있다- 하지만 노드의 개수가 10,000개를 넘어가는 문제라면 어떻게 해야 할까? -> 우선순위큐(최소힙)으로 구현한다.
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
- 노드를 하나씩 꺼내 검사하는 반복문(while문)은 노드의 개수 V 이상의 횟수로는 처리되지 않는다
- 결과적으로 현재 우선순위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수는 최대 간선의 갯수(E)만큼 연산이 수행될 수 있다- 직관적으로 전체 과정은 E개의 원소를 우선순위 큐에 넣었다가 모두 빼내는 연산과 매우 유사하다
- 시간 복잡도를 O(ElogE) 로 판단할 수 있다
- 중복 간선을 포함하지 않는 경우에 이를 O(ElogV) 로 정리할 수 있다
- O(ElogE) -> O(ElogV²) -> O(2ElogV) -> O(ElogV)
https://velog.io/@dodokyumin/%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98-%EB%8B%A4%EC%9D%B5%EC%8A%A4%ED%8A%B8%EB%9D%BCDijkstra
https://yabmoons.tistory.com/364
https://freedeveloper.tistory.com/384