퀵 정렬은 기준 데이터(pivot)를 설정하고 그 기준보다 큰 데이터와 작은 데이터의 위치를 바꾸는 정렬 방법이다.
일반적인 상황에서 가장 많이 사용되는 정렬 알고리즘 중 하나이며, 병합 정렬과 더불어 대부분의 프로그래밍 언어의 정렬 라이브러리의 근간이 되는 알고리즘이다.
# 퀵 정렬을 사용하여 오름차순 정렬
arr = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
def quick_sort(array, start, end):
if start >= end: # 원소가 1개인 경우 종료
return
pivot = start # 피벗은 첫 번째 원소
left = start + 1
right = end
while left <= right:
# 피벗보다 큰 데이터를 찾을 때까지 반복
while left <= end and array[left] <= array[pivot]:
left += 1
# 피벗보다 작은 데이터를 찾을 때까지 반복
while right > start and array[right] >= array[pivot]:
right -= 1
if left > right: # 엇갈렸다면 작은 데이터와 피벗을 교체
array[right], array[pivot] = array[pivot], array[right]
else: # 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체
array[left], array[right] = array[right], array[left]
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행
quick_sort(array, start, right - 1)
quick_sort(array, right + 1, end)
quick_sort(arr, 0, len(arr) - 1)
print(arr)
>>> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Python의 장점을 살린 퀵 정렬
def quick_sort_better(array):
# 리스트가 하나 이하의 원소만을 담고 있따면 종료
if len(array) <= 1:
return array
pivot = array[0] # 피벗은 첫 번째 원소
tail = array[1:] # 피벗을 제외한 리스트
left_side = [x for x in tail if x <= pivot]
right_side = [x for x in tail if x > pivot]
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬을 수행하고, 전체 리스트를 반환
return quick_sort_better(left_side) + [pivot] + quick_sort_better(right_side)
print(quick_sort_better(arr))
>>> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
비교 횟수 (log₂n)
레코드의 개수 n이 2의 거듭제곱이라고 가정(n=2^k) 했을 때, n=2^3의 경우, 2^3 -> 2^2 -> 2^1 -> 2^0 순으로 줄어들어 순환 호출의 깊이가 3임을 알 수 있다.
이것을 일반화하면 n=2^k의 경우, k(k=log₂n) 임을 알 수 있다.
각 순환 호출 단계의 비교 연산 (n)
각 순환 호출에서는 전체 리스트의 대부분의 레코드를 비교해야 하므로 평균 n번 정도의 비교가 이루어진다.
레코드의 개수 n이 2의 거듭제곱이라고 가정(n=2^k)했을 때, 순환 호출의 깊이는 n 임을 알 수 있다.
각 순환 호출에서는 전체 리스트의 대부분의 레코드를 비교해야 하므로 평균 n번 정도의 비교가 이루어진다.
https://velog.io/@kimdukbae/%EC%A0%95%EB%A0%AC-%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98-Sorting-Algorithm
https://yabmoons.tistory.com/250
https://gyoogle.dev/blog/algorithm/Quick%20Sort.html