Summary of Test of Series

YuJangHoon·2021년 9월 24일
0

Calculus(2021)

목록 보기
2/4
post-thumbnail
  1. Absolutely Converge하면 Converge??
  • by Squeeze Theorem for Sequences,
    if limnan=0,lim_{n \rightarrow \infty} |a_n| = 0, then limnan=0lim_{n \rightarrow \infty} a_n = 0
  1. 단순히 수열은 l'Hospital's Rule을 적용할 수 없지만, 그에 상응하는 f(x)f(x)에는 적용할 수 있다.

  2. geometric series는 common ratio rr에 의해서 수렴 여부가 결정된다.

Test for Divergence

  1. if n=1an\sum_{n=1}^\infty a_n is convergent, then limn an=0lim_{n \rightarrow \infty} \ a_n = 0
    but the converse of this is not always true in general

Integral Test

  1. If 1f(x)dx\int_{1}^\infty f(x)\,\mathrm{d}x is convergent, then n=1an\sum_{n=1}^\infty a_n is convergent.
  • ff don't need to be always decreasing.
    What is important is that ff be ultimately decreasing.
  • 1f(x)dxn=1an\int_{1}^\infty f(x)\,\mathrm{d}x \ne \sum_{n=1}^\infty a_n
  1. The p-series n=11np\sum_{n=1}^\infty {1 \over n^p} is convergent if p>1p>1.

Remainder Estimate for Integral Test

  1. n+1f(x)dx\int_{n+1}^\infty f(x)\,\mathrm{d}x Rn\leq R_n \leq nf(x)dx\int_{n}^\infty f(x)\,\mathrm{d}x
  • ff is a continuous, positive, decreasing function for xnx \ge n

Direct Comparison Test

  1. bn\sum b_n이 수렴하고, anbna_n \leq b_n for all n, an\sum a_n이 수렴한다.
    bn\sum b_n이 발산하고, anbna_n \geq b_n for all n, an\sum a_n이 발산한다.

Limit Comparison Test

  1. limnan/bn=c\lim_{n \to \infty} {a_n / b_n} = c이고 bnb_n이 수렴하면, ana_n도 수렴.

Alternating Series Test

  1. 만약 Alternating Seires의 bnb_n
    (i)(i) bn+1bnb_{n+1} \leq b_n for all nn
    (ii)(ii) limnbn=0\lim_{n \to \infty} b_n = 0
    를 만족시키면, 수렴(converge)한다.
  • ProofProof : s2ns_{2n} is monotonic(increasing) and bounded, so convergent.
  • What really matters is bn{b_n}is eventually decreasing.

Alternating Series Estimation Theorem

  1. Alternating Series Test를 통과한다면,
    Rn=ssnbn+1\left\vert R_n \right\vert = \left\vert s - s_n\right\vert \leq b_{n+1}

  2. Absolutely convergent / Conditionally convergent :
    if series is absolutely convergent, it also converges.
    if series is convergent, but not absolutely convergent.

Rearrangement

  1. Series가 absolutely convergent하면 가능하지만
    Series가 conditional convergent하면 불가능하다.

Ratio Test

  1. (i)(i) if limnan+1an=L<1lim_{n\rightarrow\infty} |{a_{n+1}\over a_{n}}| = L < 1, the series is absolutely convergent. (therfore convergent).
    (ii)(ii) If limnan+1an=1lim_{n\rightarrow\infty} |{a_{n+1}\over a_{n}}| = 1, The Ratio Test is inconclusive. need to check.

Root Test

  1. If ana_n is the form of {bn}n\{b_n\}^n, Test the value of limnann=Llim_{n\rightarrow\infty} \sqrt[n]{|a_n|} = L
profile
HYU DataScience, ML Engineer - 산업기능요원(4급)

0개의 댓글