
>> a = [1, 2, 3] %행 벡터
a =
1 2 3
>> b = [1 2 3; 4 5 6;7 8 9]
b =
1 2 3
4 5 6
7 8 9
>> A = [a;a]
A =
1 2 3
1 2 3
>> A = [a,a]
A =
1 2 3 1 2 3
>> A = [a;b]
A =
1 2 3
1 2 3
4 5 6
7 8 9
>> c = A(2,3)
c =
3
>> A(2,:)
ans =
1 2 3
>> A(:,3)
ans =
3
3
6
9
>> A(:,:)
ans =
1 2 3
1 2 3
4 5 6
7 8 9
>> A(:)
ans =
1
1
4
7
2
2
5
8
3
3
6
9
>> A(2:7)
ans =
1 4 7 2 2 5
>> B = [0:5:50]
B =
0 5 10 15 20 25 30 35 40 45 50
만약 행렬이 이미 존재하지 않을때, 배열 인덱싱을 사용하면
>> B(2, 3) = 5
B =
0 0 0
0 0 5
>> C(3,1:3) = [1,2,3]
C =
0 0 0
0 0 0
1 2 3
>> X = [] % null 행렬
X =
[]
>> eye(2,3)
ans =
1 0 0
0 1 0
>> zeros(3,2)
ans =
0 0
0 0
0 0
>> ones(2,3)
ans =
1 1 1
1 1 1
>> rand(2,3)
ans =
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975
>> randn(2,1)
ans =
-0.4336
0.3426
>> v = [1 2 3]
v =
1 2 3
>> diag(v)
ans =
1 0 0
0 2 0
0 0 3
>> diag(a)
ans =
1
5
>> diag(a,1)
ans =
2
6
>> diag(a,2)
ans =
3
>> diag(a,-1)
ans =
4
>> rot90(a)
ans =
3 6
2 5
1 4
>> fliplr(a)
ans =
3 2 1
6 5 4
>> tril(a)
ans =
1 0 0
4 5 0
>> triu(a)
ans =
1 2 3
0 5 6
>> a(:)
ans =
1
4
2
5
3
6
A‘ : A의 전치행렬
reshape(A, p, q) : A를 p by q 행렬로 reshape
>> A = [1 4 7 10;2 5 8 11;3 6 9 12]
A =
1 4 7 10
2 5 8 11
3 6 9 12
>> A'
ans =
1 2 3
4 5 6
7 8 9
10 11 12
>> B = reshape(A, 2, 6)
B =
1 3 5 7 9 11
2 4 6 8 10 12
>> A = [1 0 0; 0 1 0;0 0 1], u = [5 6 7], v = [2;3;4]
A =
1 0 0
0 1 0
0 0 1
u =
5 6 7
v =
2
3
4
>> [A; u]
ans =
1 0 0
0 1 0
0 0 1
5 6 7
>> [A v]
ans =
1 0 0 2
0 1 0 3
0 0 1 4
A =
1 4 7 10
2 5 8 11
3 6 9 12
>> A(2,:) = []
A =
1 4 7 10
3 6 9 12
>> A = [1 4 7 10;2 5 8 11;3 6 9 12]
A =
1 4 7 10
2 5 8 11
3 6 9 12
>> A(:,2:4) = []
A =
1
2
3
>> B = [ones(3) zeros(3,2); zeros(2,3) 4 * eye(2)]
B =
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 4 0
0 0 0 0 4
>> [ones(3) + eye(3), zeros(3,1) ones(3,1); eye(2,3), rot90(diag([-2,-2]))]
ans =
2 1 1 0 1
1 2 1 0 1
1 1 2 0 1
1 0 0 0 -2
0 1 0 -2 0
>> d = [2 4 6 8];
>> d1 = [-3 -3 -3];
>> d2 = [-1 -1];
>> D = diag(d) + diag(d1,1) + diag(d2,-2)
D =
2 -3 0 0
0 4 -3 0
-1 0 6 -3
0 -1 0 8
>> a = 1:2:12
a =
1 3 5 7 9 11