[DetnEst] 14. Statistical Decision Theory : Final

KBC·2024년 12월 11일
0

Detection and Estimation

목록 보기
21/23

Overview

So far, detection under

  • Neyman-Pearson criteria ( max PDP_D s.t. PFA=P_{FA}= constant )) : likelihood ratio test, threshold set by PFAP_{FA}
  • Minimize Bayesian risk (assign costs to decisions, have priors of the different hypothesis) : likelihood ratio test, threshold set by priors+costs
    • minimum probability of error = maximum a posteriori detection
    • maximum likelihood detection = minimum probability of error with equal priors
  • Known deterministic signals in Gaussian noise : correlators
  • Random signals : estimator-correlators, energy detectors

All assume knowledge of p(x;H0)p(x;\mathcal{H}_0) and p(x;H1p(x;\mathcal{H}_1)


  • What if don't know the distribution of xx under the two hypothesis?
  • What if under hypothesis 0, distribution is in some set, and under hypothesis 1, this distribution lies in another set - can we distinguish between these two?

    Composite Hypothesis Testing


Composite Hypothesis Testing

  • Signal and / or noise PDF have unknown parameters i.e. noise var., exact carrier freq., signal var.,
  • Composite hypothesis test : must accommodate unknown parameters
    • cf. simple hypothesis test : the PDFs are completely known
    • Ex) DC level in WGN with unknown amplitude A>0A>0
      H0:x[n]=w[n]vsH1:x[n]=A+w[n],n=0,1,,N1  NP test: decide H1 ifp(x;A,H1)p(x;H0)=exp[12σ2n=0N1(x[n]A)2]exp[12σ2n=0N1x2[n]]>γ,T(x)=1Nn=0N1x[n]>σ2NAlnγ+A2=γ.\mathcal{H}_0 : x[n] = w[n] \quad \text{vs} \quad \mathcal{H}_1 : x[n] = A + w[n], \quad n = 0, 1, \dots, N-1 \\[0.2cm] \bullet \; \text{NP test: decide } \mathcal{H}_1 \text{ if} \\[0.2cm] \frac{p(x; A, \mathcal{H}_1)}{p(x; \mathcal{H}_0)} = \frac{\exp \left[ -\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2 \right]}{\exp \left[ -\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n] \right]} > \gamma, \\[0.2cm] T(x) = \frac{1}{N} \sum_{n=0}^{N-1} x[n] > \frac{\sigma^2}{NA} \ln \gamma + \frac{A}{2} = \gamma'.
    • Can we implement this detector without knowledge of the exact value of AA?

  • The test statistic does not depend on AA, but it appears that the threshold γ\gamma' does (although it does not, indeed)
    T(x){N(0,σ2N)under H0N(A,σ2N)under H1PFA=Pr(T(x)>γ;H0)=Q(γσ2/N),PD=Pr(T(x)>γ;H1)=Q(γAσ2/N),γ=σ2NQ1(PFA):independent of APD=Q(Q1(PFA)NA2σ2):depend on the value of A1Nn=0N1x[n]>σ2NQ1(PFA)  yields the highest PD  for any value of A>0.T(x) \sim \begin{cases} \mathcal{N}\left(0, \frac{\sigma^2}{N}\right) & \text{under } \mathcal{H}_0 \\ \mathcal{N}\left(A, \frac{\sigma^2}{N}\right) & \text{under } \mathcal{H}_1 \end{cases} \\[0.2cm] P_{FA} = \Pr(T(x) > \gamma'; \mathcal{H}_0) = Q\left(\frac{\gamma'}{\sqrt{\sigma^2 / N}}\right), \\[0.2cm] P_D = \Pr(T(x) > \gamma'; \mathcal{H}_1) = Q\left(\frac{\gamma' - A}{\sqrt{\sigma^2 / N}}\right), \\[0.2cm] \gamma' = \sqrt{\frac{\sigma^2}{N}} Q^{-1}(P_{FA}) : \text{independent of } A \\[0.2cm] P_D = Q\left(Q^{-1}(P_{FA}) - \sqrt{\frac{NA^2}{\sigma^2}}\right) : \text{depend on the value of } A \\[0.2cm] \frac{1}{N} \sum_{n=0}^{N-1} x[n] > \sqrt{\frac{\sigma^2}{N}} Q^{-1}(P_{FA}) \; \text{yields the highest } P_D \; \text{for any value of } A > 0.
  • Uniformly Most Powerful(UMP) test

Uniformly Most Powerful (UMP) tests

  • If <A<-\infty<A<\infty, different test for AA positive and negative
  • The hypothesis testing problem \rightarrow parameter testing problem
    H0:A=0H1:A>0(one-sided test → UMP exists.)H0:A=0H1:A0(two-sided test → UMP test does not exist.)\begin{aligned} &\mathcal{H}_0 : A = 0 \\[0.2cm] &\mathcal{H}_1 : A > 0 \quad \text{(one-sided test → UMP exists.)} \\[0.5cm] &\mathcal{H}_0 : A = 0 \\[0.2cm] &\mathcal{H}_1 : A \neq 0 \quad \text{(two-sided test → UMP test does not exist.)} \end{aligned}
  • When a UMP test does not exist, we have to implement suboptimal tests
  • The optimal NP test, which is unrealizable, can provide an upper bound of the performance
  • Clairvoyant Detector : a detector assuming perfect knowledge of an unknown parameter to design the NP detector

Example of DC Level in WGN with unknown amplitude <A<-\infty<A<\infty

  • Clairvoyant detector : decide H1\mathcal{H}_1 if
    1Nn=0N1x[n]>γ+for A>0,1Nn=0N1x[n]<γfor A<0.\frac{1}{N} \sum_{n=0}^{N-1} x[n] > \gamma'_+ \quad \text{for } A > 0, \\[0.2cm] \frac{1}{N} \sum_{n=0}^{N-1} x[n] < \gamma'_- \quad \text{for } A < 0.
    clearly unrealizable, but provides an uppder bound on performance
  • Under H0\mathcal{H}_0, as xˉN(0,σ2N)\bar x\sim\mathcal{N}(0,\frac{\sigma^2}{N})
    PFA=Pr{xˉ>γ+;H0}=Q(γ+σ2N)if A>0,PFA=Pr{xˉ<γ;H0}=1Q(γσ2N)=Q(γσ2N)if A<0.P_{FA} = \Pr\{\bar{x} > \gamma'_+; \mathcal{H}_0\} = Q\left(\frac{\gamma'_+}{\sqrt{\frac{\sigma^2}{N}}}\right) \quad \text{if } A > 0, \\[0.2cm] P_{FA} = \Pr\{\bar{x} < \gamma'_-; \mathcal{H}_0\} = 1 - Q\left(\frac{\gamma'_-}{\sqrt{\frac{\sigma^2}{N}}}\right) = Q\left(\frac{-\gamma'_-}{\sqrt{\frac{\sigma^2}{N}}}\right) \quad \text{if } A < 0.
  • For a constant PFAP_{FA}, we should choose γ=γ+\gamma'_- =-\gamma'_+
  • Under H1\mathcal{H}_1, as xˉ(A,σ2N)\bar x\sim\left(A,\frac{\sigma^2}{N}\right)
    PD=Q(γ+Aσ2N)=Q(Q1(PFA)NA2σ2),if A>0,PD=1Q(γAσ2N)=Q(γ+Aσ2N)=Q(Q1(PFA)NA2σ2),if A<0.P_D = Q\left(\frac{\gamma'_+ - A}{\sqrt{\frac{\sigma^2}{N}}}\right) = Q\left(Q^{-1}(P_{FA}) - \sqrt{\frac{NA^2}{\sigma^2}}\right), \quad \text{if } A > 0, \\[0.2cm] P_D = 1 - Q\left(\frac{\gamma'_- - A}{\sqrt{\frac{\sigma^2}{N}}}\right) = Q\left(\frac{-\gamma'_- + A}{\sqrt{\frac{\sigma^2}{N}}}\right) = Q\left(Q^{-1}(P_{FA}) - \sqrt{\frac{NA^2}{\sigma^2}}\right), \quad \text{if } A < 0.
  • A candidate detector : decide H1\mathcal{H}_1 if 1Nn=0N1x[n]>r|\frac{1}{N}\sum^{N-1}_{n=0}x[n]|>r''
    PD=Q(Q1(PFA2)NA2σ2)+Q(Q1(PFA2)+NA2σ2).P_D = Q\left(Q^{-1}\left(\frac{P_{FA}}{2}\right) - \sqrt{\frac{NA^2}{\sigma^2}}\right) + Q\left(Q^{-1}\left(\frac{P_{FA}}{2}\right) + \sqrt{\frac{NA^2}{\sigma^2}}\right).

Composite Hypothesis Testing Approaches

Two major approaches

  • Bayesian approach
    : to consider the unknown parameters as realizations of random variables and to assign a prior PDF
    • Requires prior knowledge of the unknown parameters
    • Requires multidimensional integration
  • Generalized likelihood ratio test(GLRT)
    : to estimate the unknown parameters for use in a likelihood ratio test
    • More popular due to the ease of implementation and less restricitive assumptions
    • Prior knowledge is not necessary

Bayesian approach

p(x;H0)=p(xθ0;H0)p(θ0)dθ0p(x;H1)=p(xθ1;H1)p(θ1)dθ1Decide H1 if p(x;H1)p(x;H0)=p(xθ1;H1)p(θ1)dθ1p(xθ0;H0)p(θ0)dθ0>γ.p(x; \mathcal{H}_0) = \int p(x | \theta_0; \mathcal{H}_0) p(\theta_0) d\theta_0 \\[0.3cm] p(x; \mathcal{H}_1) = \int p(x | \theta_1; \mathcal{H}_1) p(\theta_1) d\theta_1 \\[0.3cm] \text{Decide } \mathcal{H}_1 \text{ if } \frac{p(x; \mathcal{H}_1)}{p(x; \mathcal{H}_0)} = \frac{\int p(x | \theta_1; \mathcal{H}_1) p(\theta_1) d\theta_1}{\int p(x | \theta_0; \mathcal{H}_0) p(\theta_0) d\theta_0} > \gamma.

Generalized Likelihood Ratio Test

The GLRT replaces the unknown parameters by their maximum likelihood estimators(MLEs)

  • There is no optimality associated with the GLRT, but it works well in practice

  • GLRT : Decide H1\mathcal{H}_1 if

    LG(x)=p(x;θ^1,H1)p(x;θ^0,H0)>γ,where θ^i is the MLE of θi assuming Hi is true (maximizes p(x;θ^i,Hi)).L_G(x) = \frac{p(x; \hat{\theta}_1, \mathcal{H}_1)}{p(x; \hat{\theta}_0, \mathcal{H}_0)} > \gamma, \\[0.3cm] \text{where } \hat{\theta}_i \text{ is the MLE of } \theta_i \text{ assuming } \mathcal{H}_i \text{ is true (maximizes } p(x; \hat{\theta}_i, \mathcal{H}_i) \text{)}.
  • Example of DC Level in WGN with unknown amplitude - GLRT(θ1=A\theta_1=A)

    H0:A=0H1:A0\mathcal{H}_0:A=0\\[0.2cm] \mathcal{H}_1:A\neq 0
    A^=xˉLG(x)=p(x;A^,H1)p(x;H0)>γ,LG(x)=exp[12σ2n=0N1(x[n]xˉ)2]exp[12σ2n=0N1x2[n]],lnLG(x)=12σ2(n=0N1x2[n]2xˉn=0N1x[n]+Nxˉ2)n=0N1x2[n],=12σ2(2Nxˉ2+Nxˉ2)=Nxˉ22σ2,decide H1 if xˉ>γ.\hat{A} = \bar{x} \rightarrow L_G(x) = \frac{p(x; \hat{A}, \mathcal{H}_1)}{p(x; \mathcal{H}_0)} > \gamma, \\[0.2cm] L_G(x) = \frac{\exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - \bar{x})^2\right]}{\exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n]\right]}, \\[0.2cm] \ln L_G(x) = -\frac{1}{2\sigma^2} \left( \sum_{n=0}^{N-1} x^2[n] - 2\bar{x} \sum_{n=0}^{N-1} x[n] + N\bar{x}^2 \right) - \sum_{n=0}^{N-1} x^2[n], \\[0.2cm] = -\frac{1}{2\sigma^2} \left( -2N\bar{x}^2 + N\bar{x}^2 \right) = \frac{N\bar{x}^2}{2\sigma^2}, \\[0.2cm] \rightarrow \text{decide } \mathcal{H}_1 \text{ if } |\bar{x}| > \gamma'.
  • Alternative form of GLRT

    LG(x)=maxθ1p(x;θ1,H1)maxθ0p(x;θ0,H0).L_G(x) = \frac{\max_{\theta_1} p(x; \theta_1, \mathcal{H}_1)}{\max_{\theta_0} p(x; \theta_0, \mathcal{H}_0)}.
  • If the PDF under H0\mathcal{H}_0 is completely known,

    LG(x)=maxθ1p(x;θ1,H1)p(x;H0)=maxθ1p(x;θ1,H1)p(x;H0)=maxθ1L(x;θ1).L_G(x) = \frac{\max_{\theta_1} p(x; \theta_1, \mathcal{H}_1)}{p(x; \mathcal{H}_0)} = \max_{\theta_1} \frac{p(x; \theta_1, \mathcal{H}_1)}{p(x; \mathcal{H}_0)} = \max_{\theta_1} L(x; \theta_1).

Example of DC level in WGN with unknown amplitude and variance - GLRT

H0:A=0,σ2>0H1:A0,σ2>0,σ2:nuisance parameter.\mathcal{H}_0: A = 0, \, \sigma^2 > 0 \\ \mathcal{H}_1: A \neq 0, \, \sigma^2 > 0, \quad \sigma^2 : \text{nuisance parameter}.

(not of immediate interest, but must be accounted for the analysis of the parameters of interest)

  • GLRT : decide H1\mathcal{H}_1 if
    LG(x)=p(x;A^,σ^12,H1)p(x;σ^02,H0)>γ,A^=xˉ,σ^02=1Nn=0N1x2[n],σ^12=1Nn=0N1(x[n]xˉ)2.p(x;A^,σ^12,H1)=1(2πσ^12)N/2exp[12σ^12n=0N1(x[n]A^)2],p(x;σ^02,H0)=1(2πσ^02)N/2exp[N2],2lnLG(x)=Nlnσ^02σ^12.L_G(\mathbf{x}) = \frac{p(\mathbf{x}; \hat{A}, \hat{\sigma}_1^2, \mathcal{H}_1)}{p(\mathbf{x}; \hat{\sigma}_0^2, \mathcal{H}_0)} > \gamma, \\ \hat{A} = \bar{x}, \quad \hat{\sigma}_0^2 = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n], \quad \hat{\sigma}_1^2 = \frac{1}{N} \sum_{n=0}^{N-1} \left( x[n] - \bar{x} \right)^2. \\ p(\mathbf{x}; \hat{A}, \hat{\sigma}_1^2, \mathcal{H}_1) = \frac{1}{(2\pi \hat{\sigma}_1^2)^{N/2}} \exp\left[ -\frac{1}{2\hat{\sigma}_1^2} \sum_{n=0}^{N-1} \left( x[n] - \hat{A} \right)^2 \right], \\ p(\mathbf{x}; \hat{\sigma}_0^2, \mathcal{H}_0) = \frac{1}{(2\pi \hat{\sigma}_0^2)^{N/2}} \exp\left[ -\frac{N}{2} \right], \\ 2 \ln L_G(\mathbf{x}) = N \ln \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2}.

Locally Most Powerful Detectors

For two-sided tests, a UMP test does not exist. For one-sided tests, a UMP test may not exist. One-sided test without any nuisance parameters

H0:θ=θ0,  H1:θ>θ0\mathcal{H}_0:\theta=\theta_0,\;\mathcal{H}_1:\theta>\theta_0

If we wish to test for values of θ\theta that are near θ0\theta_0, then a locally most powerful test exists

  • The LMP test does not guarantee the optimality if θθ0|\theta-\theta_0| is large
  • NP test : decide H1\mathcal{H}_1 if
    p(x;θ)p(x;θ0)>γlnp(x;θ)lnp(x;θ0)>lnγlnp(x;θ)lnp(x;θ0)+lnp(x;θ)θθ=θ0(θθ0)lnp(x;θ)θθ=θ0>lnγ/(θθ0)=γ,TLMP(x)=lnp(x;θ)θθ=θ0I(θ0):scaled statistic.\frac{p(\mathbf{x}; \theta)}{p(\mathbf{x}; \theta_0)} > \gamma \quad \rightarrow \quad \ln p(\mathbf{x}; \theta) - \ln p(\mathbf{x}; \theta_0) > \ln \gamma \\ \ln p(\mathbf{x}; \theta) \approx \ln p(\mathbf{x}; \theta_0) + \left. \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \right|_{\theta = \theta_0} (\theta - \theta_0) \quad \\[0.2cm] \rightarrow \quad \left. \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \right|_{\theta = \theta_0} > \ln \gamma / (\theta - \theta_0) = \gamma', \\ T_\text{LMP}(\mathbf{x}) = \frac{\left. \frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} \right|_{\theta = \theta_0}}{\sqrt{I(\theta_0)}}: \text{scaled statistic}.

Example of correlation testing

  • 2-D IID Gaussian vectors {x[0],x[1],,x[N1]},x[n]=[x1[n]x2[n]]T\{\mathbf{x}[0], \mathbf{x}[1], \dots, \mathbf{x}[N-1]\}, \quad \mathbf{x}[n] = \begin{bmatrix} x_1[n] \\ x_2[n] \end{bmatrix}^T
    x[n]N(0,C),C=σ2[1ρρ1],C1=σ2[11ρ2ρ1ρ2ρ1ρ211ρ2]H0:ρ=0,H1:ρ>0p(x;ρ)=n=0N11(2π)det1/2(C)exp(12x[n]TC1x[n])lnp(x;ρ)=N2ln2πN2lnσ4(1ρ2)12σ2n=0N1x[n]TC01x[n]lnp(x;ρ)ρ=Nρ1ρ212σ2n=0N1x[n]TC01ρx[n]C01ρ=[2ρ(1ρ2)21+ρ2(1ρ2)21+ρ2(1ρ2)22ρ(1ρ2)2]lnp(x;ρ)ρρ=0=1σ2n=0N1xT[n][0110]x[n]=n=0N1x1[n]x2[n]σ2I(ρ)=N(1+ρ2)(1ρ2)2    I(0)=NTLMP(x)=n=0N1x1[n]x2[n]Nσ2=Nρ^>γρ^=1Nn=0N1x1[n]x2[n]σ2is an estimate of ρ, although it is not the MLE.\mathbf{x}[n] \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \sigma^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}, \quad \mathbf{C}^{-1} = \sigma^{-2} \begin{bmatrix} \frac{1}{1-\rho^2} & -\frac{\rho}{1-\rho^2} \\ -\frac{\rho}{1-\rho^2} & \frac{1}{1-\rho^2} \end{bmatrix} H_0: \rho = 0, \quad H_1: \rho > 0 \\ p(\mathbf{x}; \rho) = \prod_{n=0}^{N-1} \frac{1}{(2\pi) \det^{1/2}(\mathbf{C})} \exp\left( -\frac{1}{2} \mathbf{x}[n]^T \mathbf{C}^{-1} \mathbf{x}[n] \right) \\ \ln p(\mathbf{x}; \rho) = -\frac{N}{2} \ln 2\pi - \frac{N}{2} \ln \sigma^4 (1-\rho^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \mathbf{x}[n]^T \mathbf{C}_0^{-1} \mathbf{x}[n] \\ \frac{\partial \ln p(\mathbf{x}; \rho)}{\partial \rho} = \frac{N\rho}{1-\rho^2} - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \mathbf{x}[n]^T \frac{\partial \mathbf{C}_0^{-1}}{\partial \rho} \mathbf{x}[n]\\[0.4cm] \frac{\partial \mathbf{C}_0^{-1}}{\partial \rho} = \begin{bmatrix} \frac{2\rho}{(1-\rho^2)^2} -\frac{1+\rho^2}{(1-\rho^2)^2} \\ -\frac{1+\rho^2}{(1-\rho^2)^2} \frac{2\rho}{(1-\rho^2)^2} \end{bmatrix}\\[0.3cm] \frac{\partial \ln p(\mathbf{x}; \rho)}{\partial \rho}\Bigg|_{\rho=0} = -\frac{1}{\sigma^2} \sum_{n=0}^{N-1} \mathbf{x}^T[n] \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \mathbf{x}[n] = \frac{\sum_{n=0}^{N-1} x_1[n] x_2[n]}{\sigma^2}\\[0.3cm] I(\rho) = \frac{N(1+\rho^2)}{(1-\rho^2)^2} \implies I(0) = N \\[0.3cm] T_{LMP}(\mathbf{x}) = \frac{\sum_{n=0}^{N-1} x_1[n] x_2[n]}{\sqrt{N\sigma^2}} = \sqrt{N}\hat{\rho} > \gamma'\\[0.3cm] \hat{\rho} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{x_1[n] x_2[n]}{\sigma^2} \quad \text{is an estimate of } \rho, \text{ although it is not the MLE.}

Multiple Hypothesis Testing

Without unknown parameters, the optimal Bayesian approach with minimum probability of error criterion and equally hypotheses lead to the maximum likelihood rule

  • Choose the hypothesis for which p(xHi)p(\text{x}|\mathcal{H}_i) is maximum

How about the case with unknown parameters?

Bayesian approach

  • p(xHi)=p(xθi,Hi)p(θi)dθip(\text{x}|\mathcal{H}_i)=\int p(\text{x}|\theta_i,\mathcal{H}_i)p(\theta_i)d\theta_i : ML rule can be implemented
  • Still not so popular due to the difficulty of performing integration

How about GLRT? Can it be extended to multiple hypothesis test?

GLRT for multiple hypothesis test : not possible

Example : detecting a signal that is modeled as a DC level or a line in WGN

H0:x[n]=w[n],H1:x[n]=A+w[n],H2:x[n]=A+Bn+w[n]\mathcal{H}_0 : x[n] = w[n], \quad \mathcal{H}_1 : x[n] = A + w[n], \quad \mathcal{H}_2 : x[n] = A + Bn + w[n]
  • The unknown parameters for the PDFs conditioned on H0\mathcal{H}_0 and H1\mathcal{H}_1 are a subset of those for the PDFs conditioned on H2\mathcal{H}_2
    θ0=σ2,θ1=[σ2A]=[θ0θA],θ2=[σ2AB]=[θ1θB]\theta_0 = \sigma^2, \quad \theta_1 = \begin{bmatrix} \sigma^2 \\ A \end{bmatrix} = \begin{bmatrix} \theta_0 \\ \theta_A \end{bmatrix}, \quad \theta_2 = \begin{bmatrix} \sigma^2 \\ A \\ B \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_B \end{bmatrix}
    • The parameter spaces are nested
    • decide Hk\mathcal{H}_k if maxθip(x;θiHi)\max_{\theta_i} p(\text{x};\theta_i|\mathcal{H}_i) is maximum for i=ki=k always choose H2\mathcal{H}_2 because of the nesting

  • Alternative approaches
    • Include a term to give penalty to the number of parameters
    • Generalized ML rule : deicde Hk\mathcal{H}_k if
      ξi=lnp(x;θ^iHi)12lndet(I(θ^i)) is maximized for i=k\xi_i = \ln p\left(\mathbf{x}; \hat{\boldsymbol{\theta}}_i \mid \mathcal{H}_i \right) - \frac{1}{2} \ln \det \left( \mathbf{I}(\hat{\boldsymbol{\theta}}_i) \right) \text{ is maximized for } i = k
    • det(I(θ^i))\det(I(\hat \theta_i)) increases with more number of parameters
    • Minimum description length (MDL) : choose the hypothesis that minimizes
      MDL(i)=lnp(x;θ^iHi)+ni2lnN\text{MDL}(i)=-\ln p(\text{x};\hat \theta_i|\mathcal{H}_i)+\frac{n_i}{2}\ln N
      where nin_i is the number of estimated parameters

All Content has been written based on lecture of Prof. eui-seok.Hwang in GIST(Detection and Estimation)

profile
AI, Security

0개의 댓글