-
Goal : Determine a model for the system
- Wireless Communications(idenfy & equalize multi-path)
- Geophysical Sensing(oil exploration)
- Speakerphone(echo cancellation)
-
In many applications : assume that the system is FIR(Finite Impulse Response)(length p)(or TDL)
x[n]=k=0∑p−1h[k]u[n−j]+w[n],n=0,⋯,N−1
-
where u[n]: Pilot Signal is known, u[n]=0 for n<0, w[n]: WGN
x=⎣⎢⎢⎢⎢⎡u[0]u[1]⋮u[N−1]0u[0]⋮u[N−2]⋯⋯⋱⋯00⋮u[N−p]⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎡h[0]h[1]⋮h[p−1]⎦⎥⎥⎥⎥⎤+w=Hθ+w
It's Linear than, We can apply MVUE
-
MVU estimator of the impulse response
θ^=(HTH)−1HTx,Cθ^=σ2(HTH)−1
What signal u[n] is best to use?
-
The u[n] that gives the smallest estimated variances!!
-
Choosing u[n] s.t. HTH is diagonal will minimize variance
-
Choose u[n] to be pseudo-random noise(PRN)
- →u[n] is ⊥ to all its shifts u[n−m]
PRN has approximately flat spectrum(From a frequency-domain view a PRN signal equally probes at all frequencies)
-
Designing the probing signal
var(θ^i)=eiTCθ^ei,ei=[00⋯010⋯0]T:one hot vector,Cθ^−1=DTD12=(eiTDTDDT−1ei)2, let ξ1=Dei, ξ2=DT−1ei, then 1=(ξ1Tξ2)2→var(θ^i)≥eiTCθ^−1ei1=[HTHσ2]ii
-
Equality holds when ξ1=cξ2 or Dei=ciDT−1ei, i=1,2,…,p.
→DTDei=ciei→σ2HTHei=ciei,i=1,2,…,p
-
The conditions achieving the minimum possible variances are
HTH=σ2⎣⎢⎢⎢⎢⎡c10⋮00c2⋮0⋯⋯⋱⋯00⋮cp⎦⎥⎥⎥⎥⎤
-
To minimize the variance of MVUE, u[n] should be chosen to make HTH diagonal
[HTH]ij=n=1∑Nu[n−i]u[n−j],i=1,…,p,j=1,…,p
For large N, we have
[HTH]ij≈n=0∑N−1−∣i−j∣u[n]u[n+∣i−j∣](correlation function of u[n])HTH=N⎣⎢⎢⎢⎢⎡ruu[0]ruu[1]⋮ruu[p−1]ruu[1]ruu[0]⋮ruu[p−2]⋯⋯⋱⋯ruu[p−1]ruu[p−2]⋮ruu[0]⎦⎥⎥⎥⎥⎤:Toeplitz matrixruu[k]=N1n=0∑N−1−ku[n]u[n+k]→To make it diagonal, ruu[k]=0 for k=0→Pseudorandom noise (PRN)
-
Under these conditions, HTH=Nruu[0]I
→var(h^[i])=Nruu[0]σ2,i=0,1,…,p−1
-
Then, MVU estimator θ^=(HTH)−1HTx with HTH=Nruu[0]I yields
h^[i]=Nruu[0]1n=0∑N−1u[n−i]x[n]=N1n=0∑N−1−iruu[0]u[n]x[n+i]=ruu[0]rux[i],i=0,1,…,p−1
wiener filter : has been cross corelations and autocorelations function so far about WGN