[DetnEst] 4. Linear Models and Extension

KBC·2024년 10월 2일
0

Detection and Estimation

목록 보기
6/23

Review

Cramer-Rao Lower Bound(CRLB)

  • The CRLB give a lower bound on the variance of any unbiased estimator

    Does not guarantee bound can be obtained

  • If find an unbiased estimator whose variance = CRLB then it's MVUE
  • Otherwise can use Ch.5 tools(Rao-Blackwell-Lehmann-Scheffe Theorem and Neyman-Fisher Factorization Theorem) to construct a better estimator from any unbiased one - possibly the MVUE if conditions are met

CRLB -Scalar parameter

  • Let p(x;θ)p(x;\theta) satisfy the regularity condition,
    E[lnp(x;θ)θ]=0  for all θE\left[\frac{\partial \ln p(x;\theta)}{\partial \theta}\right] =0\;\text{for all }\theta
  • Then, the variance of any unbiased estimator θ^\hat\theta must satisfy
    var(θ^)1E[2lnp(x;θ)θ2]=1E[(lnp(x;θ)θ)2]=1I(θ)\text{var}(\hat\theta)\geq\frac{1}{-E\left[\frac{\partial^2\ln p(x;\theta)}{\partial\theta^2}\right]}=\frac{1}{E\left[\left(\frac{\partial\ln p(x;\theta)}{\partial\theta}\right)^2\right]}=\frac{1}{I(\theta)}
  • Where the derivative is evaluated at the true value of θ\theta and the expectation is taken w.r.t. $p(x;\theta).

    Furthermore, an unbiased estimator may be found that attains the bound for all θ\theta iff

    lnp(x;θ)θ=I(θ)(g(x)θ)\frac{\partial\ln p(x;\theta)}{\partial\theta}=I(\theta)(g(x)-\theta)

    For some functions g(x)g(x) and II. That estimator θ^=g(x)\hat\theta =g(x), is the MVUE with variance is I(θ)I(\theta)

General CRLB for Signals in WGN

x[n]=x[n;θ]+w[n],n=0,1,,N1p(x;θ)=1(2πσ2)N/2exp[12σ2n=0N1(x[n]s[n;θ)2]lnp(x;θ)θ=1σ2n=0N1(x[n]s[n;θ])s[n;θ]θ2lnp(x;θ)θ2=1σ2n=0N1[(x[n]s[n;θ])2s[n;θ]θ2(s[n;θ]θ)2]E[2lnp(x;θ)θ2]=1σ2n=0N1(s[n;θ]θ)2var(θ^)σ2n=0N1(s[n;θ]θ)2x[n] = x[n;\theta] + w[n],\quad n=0,1,\dots,N-1\\ p(x;\theta)=\frac{1}{(2\pi \sigma^2)^{N/2}}\text{exp}\left[-\frac{1}{2\sigma^2}\displaystyle\sum_{n=0}^{N-1}(x[n]-s[n;\theta)^2\right]\\[0.3cm] \frac{\partial \ln p(x;\theta)}{\partial\theta} = \frac{1}{\sigma^2}\displaystyle\sum_{n=0}^{N-1}(x[n]-s[n;\theta])\frac{\partial s[n;\theta]}{\partial\theta}\\[0.3cm] \frac{\partial^2\ln p(x;\theta)}{\partial\theta^2}=\frac{1}{\sigma^2}\displaystyle\sum_{n=0}^{N-1}\left[(x[n]-s[n;\theta])\frac{\partial^2 s[n;\theta]}{\partial\theta^2}-\left(\frac{\partial s[n;\theta]}{\partial\theta}\right)^2\right]\\[0.3cm] E\left[\frac{\partial^2 \ln p(x;\theta)}{\partial \theta^2}\right] =-\frac{1}{\sigma^2}\displaystyle\sum_{n=0}^{N-1}\left(\frac{\partial s[n;\theta]}{\partial\theta}\right)^2\\[0.3cm] \therefore\text{var}(\hat\theta)\geq\frac{\sigma^2}{\sum_{n=0}^{N-1}\left(\frac{\partial s[n;\theta]}{\partial\theta}\right)^2}

Vector Form of the CRLB

  • Assuming p(x;θ)p(x;\theta) satisfies the regularity condition
    E[lnp(x;θ)θ]=0,  for all θE\left[\frac{\partial \ln p(x;\theta)}{\partial\theta}\right] =0,\;\text{for all } \theta
  • The covariance matrix of any unbiased estimator θ^\hat \theta satisfies
    Cθ^I1(θ)0[I(θ)]ij=E[lnp(x;θ)θiθj]C_{\hat\theta}-I^{-1}(\theta)\geq0\quad[I(\theta)]_{ij}=-E\left[\frac{\partial\ln p(x;\theta)}{\partial\theta_i\partial\theta_j}\right]
  • Where 0\geq 0 means the matrix is positive semidefinite

    Furthermore, an unbiased estimator may be found that attains the bound
    Cθ^=I1(θ)C_{\hat\theta}=I^{-1}(\theta) if and only if

    lnp(x;θ)θ=I(θ)(g(x)θ)\frac{\partial \ln p(x;\theta)}{\partial \theta} = I(\theta)(g(x) - \theta)
  • In that case, θ^=g(x)\hat \theta = g(x) is the MVU estimator with variance I1(θ)I^{-1}(\theta).

Linear Model 으악

  • The determination of the MVUE is difficult in general. Many estimation problems can be represented by the linear model for which the MVUE is easily determined
  • Line fitting example
    x[n]=A+Bn+w[n],n=0,1,,N1,  w[n]:WGNx[n]=A+Bn+w[n],\quad n=0,1,\dots,N-1,\;w[n]:\text{WGN}
    • In Matrix notation,
      x=Hθ+w:linear modelx=[x[0]  x[1]  x[N1]]T,w=[w[0]  w[1]    w[N1]]T  wN(0,σ2I)θ=[A  B]TH=[10111N1]\text{x} =H\theta +w : \text{linear model}\\ \text{x} = \begin{matrix}\left[x[0]\;x[1]\;\cdots x[N-1]\right]\end{matrix}^T,\\ w=[w[0]\;w[1]\;\cdots\;w[N-1]]^T\;w\sim\mathcal{N}(0,\sigma^2I)\\ \theta=[A\;B]^T\\[0.5cm] \mathbf{H} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & N-1 \end{bmatrix}

MVUE for the Linear Model

  • Determine the MVUE from the equality condition of CRLB theorem
  • θ^=g(x)\hat \theta =g(x) will be the MVUE if
    lnp(x;θ)θ=I(θ)(g(x)θ)with Cθ^=I1(θ)P(n;θ)=n=0N1P(x(n);θ)\frac{\partial \ln p(x;\theta)}{\partial \theta} =I(\theta)(g(x)-\theta)\quad \text{with }C_{\hat\theta}=I^{-1}(\theta)\\ P(\underline{n} ; \underline{\theta}) = \prod_{n=0}^{N-1} P(x(n) ; \underline{\theta})
  • For the linear model,
    lnp(x;θ)θ=θ[ln(2πσ2)N212σ2(xHθ)T(xHθ)]=12σ2θ[xTx2xTHθ+θTHTHθ]=1σ2[H2xHTHθ]\frac{\partial \ln p(x;\theta)}{\partial\theta}=\frac{\partial}{\partial\theta}\left[-\ln(2\pi\sigma^2)^{\frac{N}{2}}-\frac{1}{2\sigma^2}(\text{x}-\text{H}\theta)^T(\text{x}-\text{H}\theta)\right]\\ =-\frac{1}{2\sigma^2}\frac{\partial}{\partial\theta}[\text{x}^T\text{x}-2\text{x}^T\text{H}\theta +\theta^T\text{H}^T\text{H}\theta]\\ =\frac{1}{\sigma^2}[\text{H}^2\text{x}-\text{H}^T\text{H}\theta]
  • Assume that HTH\text{H}^T\text{H} is invertible
    lnp(x;θ)θ=HTHσ2[(HTH)1HTxθ]I(θ)(g(x)θ)θ^=(HTH)1HTx,I(θ)=HTHσ2Cθ^=I1(θ)=σ2(HTH)1\frac{\partial\ln p(x;\theta)}{\partial\theta}=\frac{\text{H}^T\text{H}}{\sigma^2}[(\text{H}^T\text{H})^{-1}\text{H}^T\text{x}-\theta]\approx I(\theta)(g(x)-\theta)\\ \rightarrow\hat\theta=(\text{H}^T\text{H})^{-1}\text{H}^T\text{x},\quad I(\theta)=\frac{\text{H}^T\text{H}}{\sigma^2}\\ C_{\hat\theta}=I^{-1}(\theta)=\sigma^2(\text{H}^T\text{H})^{-1}
  • For linear model, an efficient MVUE can be found if HTH\text{H}^T\text{H} is invertible. HTH\text{H}^T\text{H} is invertible iff(if and only iff) the columns of H\text{H} are linearly independent.(see Prob. 4.2)
  • If the columns of H\text{H} are not linearly independent, even in the absence of noise, the model parameters will not be identificable(The number of equations is less than the number of variables.)

MVUE for the Linear Model - Theorem

  • If the observed data can be modeled as x=Hθ+w\text{x}=\text{H}\theta+\text{w}, then the MVUE is
    θ^=(HTH)1HTx\hat \theta=(\text{H}^T\text{H})^{-1}\text{H}^T\text{x}
  • And the covariance matrix of θ^\hat\theta is
    Cθ^=I1(θ)=σ2(HTH)1C_{\hat\theta}=I^{-1}(\theta)=\sigma^2(\text{H}^T\text{H})^{-1}
  • Where x\text{x} is an N×1N\times 1 vector of observations, H\text{H} is known N×pN\times p observation matrix(with N>pN > p) with rank pp
  • θ\theta is a p×1p\times 1 vector of parameters to be estimated, and w\text{w} is an N×1N\times 1 noise vector with PDF N(0,σ2I)\mathcal{N}(0, \sigma^2I)
  • For the linear model the MVUE is efficient in that it attains the CRLB.
  • Also, the statistical performance of θ^\hat\theta is completely specified, because θ^\hat\theta is a linear transformation of a Gaussian vecot x\text{x} and hence
    θ^N(θ,σ2(HTH)1)\hat\theta\sim\mathcal{N}(\theta, \sigma^2(\text{H}^T\text{H})^{-1})

Example - Curve Fitting

The Linear in Linear Model does not come from fitting straight lines to data. It is more general than that!!

x(tn)=θ1+θ2tn+θ3tn2+w(tn),n=0,,N1x=Hθ+wx=[x(t0)  x(t1)    x(tN1)]T,θ=[θ1  θ2  θ3]TH=[1t0t021t1t121tN1tN12]θ^=(HTH)1HTxθ^N(θ,σ2(HTH)1)x(t_n)=\theta_1+\theta_2t_n+\theta_3t^2_n+w(t_n),\quad n=0,\cdots,N-1\\ \text{x}=\text{H}\theta+\text{w}\\ \text{x}=[x(t_0)\;x(t_1)\;\cdots\;x(t_{N-1})]^T,\quad\theta=[\theta_1\;\theta_2\;\theta_3]^T\\[0.5cm] \text{H}=\left[\begin{matrix}1&t_0&t^2_0\\ 1&t_1&t^2_1\\ \cdots&\cdots&\cdots\\ 1&t_{N-1}&t^2_{N-1}\end{matrix}\right]\\ \rightarrow\hat\theta=(\text{H}^T\text{H})^{-1}\text{H}^T\text{x}\quad\hat\theta\sim\mathcal{N}(\underline\theta, \sigma^2(\text{H}^T\text{H})^{-1})

Example - Fourier Analysis

  • Data model
    x[n]=k=1Makcos(2πknN)+k=1Mbksin(2πknN)+w[n],n=0,1,,N1x[n]=\displaystyle\sum_{k=1}^Ma_k \cos\left(\frac{2\pi kn}{N}\right)+\displaystyle\sum_{k=1}^Mb_k\sin\left(\frac{2\pi kn}{N}\right) + w[n],\quad n=0,1,\cdots,N-1
  • Parameters(Fourier coefficients)
    θ=[a1  a2    aM  b1  b2    bM]T\theta=[a_1\;a_2\;\cdots\;a_M\;b_1\;b_2\;\cdots\;b_M]^T
  • Observation matrix
    H=[1100cos(2πN)cos(2πMN)sin(2πN)sin(2πMN)cos(2π(N1)N)cos(2πM(N1)N)sin(2π(N1)N)sin(2πM(N1)N)]=[h1 h2  h2M]hiThj=0 for ij\mathbf{H} = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ \cos\left(\frac{2\pi}{N}\right) & \cdots & \cos\left(\frac{2\pi M}{N}\right) & \sin\left(\frac{2\pi}{N}\right) & \cdots & \sin\left(\frac{2\pi M}{N}\right) \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ \cos\left(\frac{2\pi (N-1)}{N}\right) & \cdots & \cos\left(\frac{2\pi M (N-1)}{N}\right) & \sin\left(\frac{2\pi (N-1)}{N}\right) & \cdots & \sin\left(\frac{2\pi M (N-1)}{N}\right) \\ \end{bmatrix}\\ = [\mathbf{h}_1 \ \mathbf{h}_2 \ \cdots \ \mathbf{h}_{2M}] \quad \rightarrow \quad \mathbf{h}_i^T \mathbf{h}_j = 0 \ \text{for} \ i \neq j
  • Apply MVUE Theorem for Linear Model, θ^=(HTH)1HTx\hat\theta=(\text{H}^T\text{H})^{-1}\text{H}^T\text{x}
    HTH=[h1Th2MT][h1 h2  h2M]=[N/2000N/2000N/2]=N2Iθ^=2NHTx=[2Nh1Tx2Nh2MTx]{a^k=2Nn=0N1x[n]cos(2πknN)b^k=2Nn=0N1x[n]sin(2πknN)E(a^k)=ak, E(b^k)=bk, Cθ^=σ2(HTH)1=2σ2NI\mathbf{H}^T \mathbf{H} = \begin{bmatrix} \mathbf{h}_1^T \\ \vdots \\ \mathbf{h}_{2M}^T \end{bmatrix} [\mathbf{h}_1 \ \mathbf{h}_2 \ \cdots \ \mathbf{h}_{2M}] = \begin{bmatrix} N/2 & 0 & \cdots & 0 \\ 0 & N/2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N/2 \end{bmatrix} = \frac{N}{2} \mathbf{I}\\ \hat{\theta} = \frac{2}{N} \mathbf{H}^T \mathbf{x} = \begin{bmatrix} \frac{2}{N} \mathbf{h}_1^T \mathbf{x} \\ \vdots \\ \frac{2}{N} \mathbf{h}_{2M}^T \mathbf{x} \end{bmatrix} \rightarrow \begin{cases} \hat{a}_k = \frac{2}{N} \sum_{n=0}^{N-1} x[n] \cos\left( \frac{2\pi kn}{N} \right) \\ \hat{b}_k = \frac{2}{N} \sum_{n=0}^{N-1} x[n] \sin\left( \frac{2\pi kn}{N} \right) \end{cases}\\ \rightarrow E(\hat{a}_k) = a_k, \ E(\hat{b}_k) = b_k, \ \mathbf{C}_{\hat{\theta}} = \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1} = \frac{2\sigma^2}{N} \mathbf{I}

Example - System Identification

  • Goal : Determine a model for the system

    • Wireless Communications(idenfy & equalize multi-path)
    • Geophysical Sensing(oil exploration)
    • Speakerphone(echo cancellation)
  • In many applications : assume that the system is FIR(Finite Impulse Response)(length p)(or TDL)

    x[n]=k=0p1h[k]u[nj]+w[n],n=0,,N1x[n] =\displaystyle\sum_{k=0}^{p-1}h[k]u[n-j]+w[n],\quad n=0,\cdots,N-1
  • where u[n]u[n]: Pilot Signal is known, u[n]=0u[n] =0 for n<0n < 0, w[n]w[n]: WGN

    x=[u[0]00u[1]u[0]0u[N1]u[N2]u[Np]][h[0]h[1]h[p1]]+w=Hθ+w\mathbf{x} = \begin{bmatrix} u[0] & 0 & \cdots & 0 \\ u[1] & u[0] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ u[N-1] & u[N-2] & \cdots & u[N-p] \end{bmatrix} \begin{bmatrix} h[0] \\ h[1] \\ \vdots \\ h[p-1] \end{bmatrix} + \mathbf{w} = \underline\mathbf{H}\underline\theta + \underline\mathbf{w}

    It's Linear than, We can apply MVUE

  • MVU estimator of the impulse response

    θ^=(HTH)1HTx,Cθ^=σ2(HTH)1\hat \theta=(\text{H}^T\text{H})^{-1}\text{H}^T\text{x},\quad C_{\hat\theta}=\sigma^2(\text{H}^T\text{H})^{-1}

    What signal u[n]u[n] is best to use?

  • The u[n]u[n] that gives the smallest estimated variances!!

  • Choosing u[n]u[n] s.t. HTH\text{H}^T\text{H} is diagonal will minimize variance

  • Choose u[n]u[n] to be pseudo-random noise(PRN)

    • u[n] is  to all its shifts u[nm]\rightarrow u[n] \text{ is } \perp \text{ to all its shifts } u[n - m]

      PRN has approximately flat spectrum(From a frequency-domain view a PRN signal equally probes at all frequencies)

  • Designing the probing signal

    var(θ^i)=eiTCθ^ei,ei=[0  0    0  1  0    0]T:one hot vector,  Cθ^1=DTD12=(eiTDTDDT1ei)2, let ξ1=Dei, ξ2=DT1ei, then 1=(ξ1Tξ2)2var(θ^i)1eiTCθ^1ei=σ2[HTH]ii\text{var}(\hat\theta_i)=\text{e}^T_iC_{\hat\theta}\text{e}_i,\quad \text{e}_i=[0\;0\;\cdots\;0\;1\;0\;\cdots\;0]^T:\text{one hot vector},\;C^{-1}_{\hat\theta}=\text{D}^T\text{D}\\ 1^2 = \left( \mathbf{e}_i^T \mathbf{D}^T \mathbf{D} \mathbf{D}^{T^{-1}} \mathbf{e}_i \right)^2, \text{ let } \boldsymbol{\xi}_1 = \mathbf{D} \mathbf{e}_i, \ \boldsymbol{\xi}_2 = \mathbf{D}^{T^{-1}} \mathbf{e}_i, \text{ then } 1 = \left( \boldsymbol{\xi}_1^T \boldsymbol{\xi}_2 \right)^2\\ \rightarrow \text{var}(\hat\theta_i)\geq\frac{1}{\text{e}^T_iC^{-1}_{\hat\theta}\text{e}_i}=\frac{\sigma^2}{[\text{H}^T\text{H}}]_{ii}
  • Equality holds when ξ1=cξ2\xi_1=c\xi_2 or Dei=ciDT1ei, i=1,2,,p.\mathbf{D} \mathbf{e}_i = c_i \mathbf{D}^{T^{-1}} \mathbf{e}_i, \ i = 1, 2, \dots, p.

    DTDei=cieiHTHσ2ei=ciei,i=1,2,,p\rightarrow \mathbf{D}^T \mathbf{D} \mathbf{e}_i = c_i \mathbf{e}_i \quad \rightarrow \frac{\mathbf{H}^T \mathbf{H}}{\sigma^2} \mathbf{e}_i = c_i \mathbf{e}_i, \quad i = 1, 2, \dots, p
  • The conditions achieving the minimum possible variances are

    HTH=σ2[c1000c2000cp]\mathbf{H}^T \mathbf{H} = \sigma^2 \begin{bmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_p \end{bmatrix}
  • To minimize the variance of MVUE, u[n]u[n] should be chosen to make HTH\text{H}^T\text{H} diagonal

    [HTH]ij=n=1Nu[ni]u[nj],i=1,,p,j=1,,p[\mathbf{H}^T \mathbf{H}]_{ij} = \sum_{n=1}^{N} u[n - i] u[n - j], \quad i = 1, \dots, p, \quad j = 1, \dots, p

    For large NN, we have

    [HTH]ijn=0N1iju[n]u[n+ij](correlation function of u[n])HTH=N[ruu[0]ruu[1]ruu[p1]ruu[1]ruu[0]ruu[p2]ruu[p1]ruu[p2]ruu[0]]:Toeplitz matrixruu[k]=1Nn=0N1ku[n]u[n+k]To make it diagonal, ruu[k]=0 for k0Pseudorandom noise (PRN)[\mathbf{H}^T \mathbf{H}]_{ij} \approx \sum_{n=0}^{N-1-|i-j|} u[n] u[n + |i - j|] \quad (\text{correlation function of } u[n])\\ \mathbf{H}^T \mathbf{H} = N \begin{bmatrix} r_{uu}[0] & r_{uu}[1] & \cdots & r_{uu}[p-1] \\ r_{uu}[1] & r_{uu}[0] & \cdots & r_{uu}[p-2] \\ \vdots & \vdots & \ddots & \vdots \\ r_{uu}[p-1] & r_{uu}[p-2] & \cdots & r_{uu}[0] \end{bmatrix} \quad : \text{Toeplitz matrix}\\[0.3cm] r_{uu}[k] = \frac{1}{N} \sum_{n=0}^{N-1-k} u[n] u[n+k]\\ \rightarrow \text{To make it diagonal, }\\ r_{uu}[k] = 0 \text{ for } k \neq 0 \rightarrow \text{Pseudorandom noise (PRN)}
  • Under these conditions, HTH=Nruu[0]I\text{H}^T\text{H}=Nr_{uu}[0]I

    var(h^[i])=σ2Nruu[0],i=0,1,,p1\rightarrow \text{var}(\hat{h}[i]) = \frac{\sigma^2}{N r_{uu}[0]}, \quad i = 0, 1, \dots, p-1
  • Then, MVU estimator θ^=(HTH)1HTx\hat\theta = (\text{H}^T\text{H})^{-1}\text{H}^T\text{x} with HTH=Nruu[0]I\text{H}^T\text{H}=Nr_{uu}[0]I yields

    h^[i]=1Nruu[0]n=0N1u[ni]x[n]=1Nn=0N1iu[n]x[n+i]ruu[0]=rux[i]ruu[0],i=0,1,,p1\hat{h}[i] = \frac{1}{N r_{uu}[0]} \sum_{n=0}^{N-1} u[n-i] x[n]\\ = \frac{1}{N} \sum_{n=0}^{N-1-i} \frac{u[n] x[n+i]}{r_{uu}[0]}\\ = \frac{r_{ux}[i]}{r_{uu}[0]}, \quad i = 0, 1, \dots, p-1

    wiener filter : has been cross corelations and autocorelations function so far about WGN

Linear Model with Colored Noise

  • General Linear Model with colored noise
    wN(0,C)\text{w}\sim\mathcal{N}(0,C)

    Whitening approach

    C1=DTD,D:invertible N×N matrix: whitening transformationE[(Dw)(Dw)T]=DCDT=DD1DTDT=ITransform to whitened model:x=Hθ+wx=Dx=DHθ+Dw=Hθ+wwN(0,I)θ^=(HTH)1HTx=(HTDTDH)1HTDTDx=(HTC1H)1HTC1xCθ^=(HTH)1=(HTC1H)1\mathbf{C}^{-1} = \mathbf{D}^T \mathbf{D}, \quad \mathbf{D} : \text{invertible } N \times N \text{ matrix: whitening transformation} \\ E[(\mathbf{D}\mathbf{w})(\mathbf{D}\mathbf{w})^T] = \mathbf{DCD}^T = \mathbf{DD}^{-1} \mathbf{D}^T \mathbf{D}^T = \mathbf{I} \\ \text{Transform to whitened model:} \quad \mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w} \quad \rightarrow \quad \mathbf{x}' = \mathbf{D} \mathbf{x} = \mathbf{D} \mathbf{H} \boldsymbol{\theta} + \mathbf{D} \mathbf{w} = \mathbf{H}' \boldsymbol{\theta} + \mathbf{w}' \\ \mathbf{w}' \sim \mathcal{N}(0, \mathbf{I}) \\ \hat{\boldsymbol{\theta}} = (\mathbf{H}'^T \mathbf{H}')^{-1} \mathbf{H}'^T \mathbf{x}' = (\mathbf{H}^T \mathbf{D}^T \mathbf{D} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{D}^T \mathbf{D} \mathbf{x} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x} \\ \mathbf{C}_{\hat{\boldsymbol{\theta}}} = (\mathbf{H}'^T \mathbf{H}')^{-1} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}

All Content has been written based on lecture of Prof. eui-seok.Hwang in GIST(Detection and Estimation)

profile
AI, Security

0개의 댓글