P1
- Given 3 data points (t0,x0),(t1,x1) and (t2,x2)
- We can have a second order polynomial, where 3 coefficients are unknown
- What is the best estimate for unknown parameters θ0,θ1,and θ2 of a linear model
xn=θ0+θ1tn+θ2tn2+wn
- if the data points are (1,0),(2,0.69),(4,1.39), where ln2∼0.69 and ln4∼1.39
Solution
x=Hθ+w⇒⎣⎢⎡x0x1x2⎦⎥⎤=⎣⎢⎡111t0t1t2t02t12t22⎦⎥⎤⎣⎢⎡θ0θ1θ2⎦⎥⎤+⎣⎢⎡w0w1w2⎦⎥⎤⇒H=⎣⎢⎡111t0t1t2t02t12t22⎦⎥⎤=⎣⎢⎡1111241416⎦⎥⎤x=⎣⎢⎡x0x1x2⎦⎥⎤=⎣⎢⎡0ln2ln4⎦⎥⎤
- Since the H is
invertible : (HTH)−1HT=H−1θ^=H−1x=⎣⎢⎡38−231−225−2131−2161⎦⎥⎤⎣⎢⎡0ln2ln4⎦⎥⎤=⎣⎢⎡−35ln223ln2−61ln2⎦⎥⎤=⎣⎢⎡−0.921.037−0.115⎦⎥⎤
P2
- Assume that we have a single sinusoidal component at fk=k/N
- The model as given by (4.12) is
x[n]=akcos(2πfkn)+bksin(2πfkn)+w[n],n=0,1,…,N−1
- Using the identity Acosw+Bsinw=A2+B2cos(w−ϕ), where ϕ=arctan(B/A)
- We can rewrite the model as
x[n]=ak2+bk2cos(2πfkn−ϕ)+w[n]
- An MVUE is used for ak,bk, so that the estimated power of the sinusoid is
P^=2a^k2+b^k2
- A measure of detectability is E2(P^)/var(P^)
- Compare the measure when a sinsoid is present to the case when only noise is present or ak=bk=0
- Could you use the estimated power to decide if a signal is present?
Solution
Θ^=[a^kb^k]⇒CΘ^=N2σ2Ia^k∼N(ak,N2σ2),b^k∼N(bk,N2σ2)E[p^k2]=E[2a^k2+b^k2]=21(Var(a^k)+E2[a^k]+Var(b^k)+E2[b^k])=21(2⋅N2σ2+ak2+bk2)=N2σ2+2ak2+bk2E2[p^k2]=(N2σ2+2ak2+bk2)2Var[p^k]=Var(2a^k2+b^k2)=41(Var(a^k2)+Var(b^k2))
- For the Gaussian
If X∼Gaussian Distribution (μ,σ2),Var[X2]=E[X4]−E2[X2]E[X4]=μ4+6μ2σ2+3σ4,E2[X2]=(μ2+σ2)2Var[X2]=4μ2σ2+2σ4
- Then
Var(a^k2)=4ak2N2σ2+2N24σ4(bk도 동일)Var(p^k)=41(4ak2N2σ2+8N2σ4+4bk2N2σ2+8N2σ4)=4(ak2+bk2)Nσ2+N24σ4+N2σ2(ak2+bk2)+N24σ4⇒Var(p^k)E2[p^k2]=(ak2+bk2)2Nσ2+4N2σ4(ak2+bk2)2/4+2σ2(ak2+bk2)/N+4σ4/N2
- Consequently
If ak,bk→0,Var(p^k)E2[p^k2]→4σ4/N24σ4/N2=1If not,Var(p^k)E2[p^k2]>1