from sklearn.linear_model import LinearRegression
LR_model = LinearRegression()
# x_train = training set
# y_train = training set의 정답 데이터
# x_test = test set
LR_train_model = LR_model.fit(x_train, y_train)
LR_predicted = LR_train_model.predict(x_test)
from sklearn.linear_model import Lasso
lasso_model = Lasso()
lasso_train_model = lasso_model.fit(x_train, y_train)
lasso_predicted = lasso_train_model.predict(x_test)
from sklearn.linear_model import Ridge
ridge_model = Ridge()
ridge_train_model = ridge_model.fit(x_train, y_train)
ridge_predicted = ridge_train_model.predict(x_test)
from sklearn.ensemble import RandomForestRegressor
RF_model = RandomForestRegressor()
RF_train_model = RF_model.fit(x_train, y_train)
RF_predicted = RF_train_model.fit(x_test)
from xgboost import XGBRegressor
xgb_model = XGBRegressor()
xgb_train_model = xgb_model.fit(x_train, y_train)
xgb_predicted = xgb_train_model.fit(x_test)
from sklearn.ensemble import GradientBoostingRegressor
GB_model = GradientBoostingRegressor()
GB_train_model = GB_model.fit(x_train, y_train)
GB_predicted = GB_train_model.fit(x_test)
** 좀 더 정확한 결과를 위해 GridSearch, RandomSearch 등 hyperparameter tuning을 해서 parameter 값을 모델에 입력해주면 좋다.