LangGraphλ LangChain μνκ³μ μΌλΆλ‘, 볡μ‘ν AI μν¬νλ‘μ°λ₯Ό ꡬμΆνκΈ° μν κ°λ ₯ν νλ μμν¬
μ μ°νκ³ νμ₯ κ°λ₯ν AI μ ν리μΌμ΄μ
μ λΉκ΅μ μ½κ² λ§λ€ μ μμ
from typing import TypedDict, Annotated, Sequence, List
from langchain_core.documents.base import Document
class AgentState(TypedDict):
actions: str
context: Sequence[Document]
answer: str
question: str
groundness_status: str
AgentState
λ μν¬νλ‘μ°μ κ° λ¨κ³μμ μ¬μ©λλ λ°μ΄ν°λ₯Ό μ μdef extract_actions(state: AgentState) -> AgentState:
"""μ‘μ
μΆμΆ"""
actions = "μ§λ¬Έμμ μΆμΆλ μ‘μ
λ€"
return AgentState(actions=actions)
def is_exist_actions(state: AgentState) -> str:
"""μ‘μ
μ‘΄μ¬ μ¬λΆ 체ν¬"""
# is_exist_actions, is_not_exist_actions
is_exist_actions = "is_exist_actions"
return is_exist_actions
def is_exist_docs(state: AgentState) -> str:
"""κ²μ λ¬Έμ μ‘΄μ¬ μ¬λΆ 체ν¬"""
# is_exist_docs, is_not_exist_docs
is_exist_docs = "is_exist_docs"
return is_exist_docs
def retrieve(state: AgentState) -> AgentState:
"""λ¬Έμ κ²μ"""
docs = [Document(page_content="κ²μλ λ¬Έμ 1"), Document(page_content="κ²μλ λ¬Έμ 2")]
return AgentState(context=docs)
def invoke_llm_with_context(state: AgentState) -> AgentState:
"""contextμ ν¨κ» LLM νΈμΆ"""
answer = "LLM λ΅λ³"
return AgentState(answer=answer)
def invoke_llm(state: AgentState) -> AgentState:
"""LLM νΈμΆ"""
answer = "LLM λ΅λ³"
return AgentState(answer=answer)
def check_groundedness(state: AgentState) -> AgentState:
"""κ²μ λ¬Έμμ LLM λ΅λ³μ μ ν©μ± νμΈ"""
# grounded, notGrounded, notSure
groundness_status = "grounded"
return AgentState(groundness_status=groundness_status)
def judgement(state: AgentState) -> str:
"""λ
Έλ μ¬νΈμΆ νΉμ μ’
λ£ νλ¨"""
# retry_retrieve, retry_invoke_llm_with_context, END
judgement = END
return judgement
from langgraph.graph import StateGraph
workflow = StateGraph(AgentState)
workflow.add_node("extract_actions", extract_actions)
workflow.add_node("retrieve", retrieve)
workflow.add_node("invoke_llm", invoke_llm)
workflow.add_node("invoke_llm_with_context", invoke_llm_with_context)
workflow.add_node("check_groundedness", check_groundedness)
workflow.add_conditional_edges(
"extract_actions",
is_exist_actions,
{
"is_exist_actions": "retrieve",
"is_not_exist_actions": "invoke_llm",
}
)
workflow.add_conditional_edges(
"retrieve",
is_exist_docs,
{
"is_exist_docs": "invoke_llm_with_context",
"is_not_exist_docs": "invoke_llm",
}
)
workflow.add_edge("invoke_llm_with_context", "check_groundedness")
workflow.add_edge("invoke_llm", END)
workflow.add_conditional_edges(
"check_groundedness",
judgement,
{
"retry_retrieve": "retrieve",
"retry_invoke_llm_with_context": "invoke_llm_with_context",
END: END
}
)
workflow.set_entry_point("extract_actions")
app = workflow.compile()
app.invoke(AgentState(question="λ΄ μ§λ¬Έ"))