πŸ¦œπŸ•ΈοΈ λž­κ·Έλž˜ν”„ (LangGraph): 효율적인 AI μ›Œν¬ν”Œλ‘œμš° ꡬ좕

0koangΒ·2024λ…„ 7μ›” 26일
0

AI

λͺ©λ‘ 보기
7/8
post-thumbnail





πŸ¦œπŸ•ΈοΈ LangGraph

LangGraphλŠ” LangChain μƒνƒœκ³„μ˜ μΌλΆ€λ‘œ, λ³΅μž‘ν•œ AI μ›Œν¬ν”Œλ‘œμš°λ₯Ό κ΅¬μΆ•ν•˜κΈ° μœ„ν•œ κ°•λ ₯ν•œ ν”„λ ˆμž„μ›Œν¬
μœ μ—°ν•˜κ³  ν™•μž₯ κ°€λŠ₯ν•œ AI μ• ν”Œλ¦¬μΌ€μ΄μ…˜μ„ 비ꡐ적 μ‰½κ²Œ λ§Œλ“€ 수 있음





βœ… μ£Όμš” νŠΉμ§•

  • μƒνƒœ 기반 κ·Έλž˜ν”„: λ³΅μž‘ν•œ λ‘œμ§μ„ λͺ…ν™•ν•˜κ²Œ ν‘œν˜„
  • 쑰건뢀 흐름: 동적인 μ˜μ‚¬ κ²°μ • ν”„λ‘œμ„ΈμŠ€ κ΅¬ν˜„
  • λͺ¨λ“ˆμ„±: μž¬μ‚¬μš© κ°€λŠ₯ν•œ μ»΄ν¬λ„ŒνŠΈλ‘œ μ›Œν¬ν”Œλ‘œμš° ꡬ성
  • μœ μ§€λ³΄μˆ˜μ„±: λͺ¨λ“ˆν™”λœ ꡬ쑰둜 κ°œλ³„ μ»΄ν¬λ„ŒνŠΈ μˆ˜μ • 용이
  • ν™•μž₯μ„±: μƒˆλ‘œμš΄ λ…Έλ“œλ‚˜ 쑰건을 μ‰½κ²Œ μΆ”κ°€ κ°€λŠ₯
  • 디버깅: 각 단계별 μƒνƒœ 확인이 용이





βœ… μ›Œν¬ν”Œλ‘œμš° ꡬ좕 κ³Όμ •

  1. μƒνƒœ μ •μ˜
  2. λ…Έλ“œ (ν•¨μˆ˜) μ •μ˜
  3. κ·Έλž˜ν”„ 생성
  4. λ…Έλ“œ μΆ”κ°€
  5. 엣지 (μ—°κ²°) μ •μ˜
  6. μ‹œμž‘μ  μ„€μ •
  7. κ·Έλž˜ν”„ 컴파일





βœ… 상세 κ΅¬ν˜„ 예제

1. μƒνƒœ μ •μ˜

from typing import TypedDict, Annotated, Sequence, List
from langchain_core.documents.base import Document

class AgentState(TypedDict):
    actions: str
    context: Sequence[Document]
    answer: str
    question: str
    groundness_status: str
  • AgentStateλŠ” μ›Œν¬ν”Œλ‘œμš°μ˜ 각 λ‹¨κ³„μ—μ„œ μ‚¬μš©λ˜λŠ” 데이터λ₯Ό μ •μ˜
  • 각 ν•„λ“œλŠ” μ›Œν¬ν”Œλ‘œμš°μ˜ νŠΉμ • λΆ€λΆ„μ—μ„œ ν•„μš”ν•œ 정보λ₯Ό λ‚˜νƒ€λƒ„

2. λ…Έλ“œ (ν•¨μˆ˜) μ •μ˜

  • 각 λ…Έλ“œλŠ” νŠΉμ • μž‘μ—…μ„ μˆ˜ν–‰ν•˜λŠ” ν•¨μˆ˜λ‘œ μ •μ˜
  • 이 κΈ€μ—λŠ” λ…Έλ“œ κ΅¬ν˜„λΆ€ μ—†μŒ
def extract_actions(state: AgentState) -> AgentState:
    """μ•‘μ…˜ μΆ”μΆœ"""
    actions = "μ§ˆλ¬Έμ—μ„œ μΆ”μΆœλœ μ•‘μ…˜λ“€"
    return AgentState(actions=actions)

def is_exist_actions(state: AgentState) -> str:
    """μ•‘μ…˜ 쑴재 μ—¬λΆ€ 체크"""
    # is_exist_actions, is_not_exist_actions
    is_exist_actions = "is_exist_actions"
    return is_exist_actions

def is_exist_docs(state: AgentState) -> str:
    """검색 λ¬Έμ„œ 쑴재 μ—¬λΆ€ 체크"""
    # is_exist_docs, is_not_exist_docs
    is_exist_docs = "is_exist_docs"
    return is_exist_docs

def retrieve(state: AgentState) -> AgentState:
    """λ¬Έμ„œ 검색"""
    docs = [Document(page_content="κ²€μƒ‰λœ λ¬Έμ„œ 1"), Document(page_content="κ²€μƒ‰λœ λ¬Έμ„œ 2")]
    return AgentState(context=docs)

def invoke_llm_with_context(state: AgentState) -> AgentState:
    """context와 ν•¨κ»˜ LLM 호좜"""
    answer = "LLM λ‹΅λ³€"
    return AgentState(answer=answer)

def invoke_llm(state: AgentState) -> AgentState:
    """LLM 호좜"""
    answer = "LLM λ‹΅λ³€"
    return AgentState(answer=answer)
    
def check_groundedness(state: AgentState) -> AgentState:
    """검색 λ¬Έμ„œμ™€ LLM λ‹΅λ³€μ˜ 적합성 확인"""
    # grounded, notGrounded, notSure
    groundness_status = "grounded" 
    return AgentState(groundness_status=groundness_status)
    
def judgement(state: AgentState) -> str:
    """λ…Έλ“œ 재호좜 ν˜Ήμ€ μ’…λ£Œ νŒλ‹¨"""
    # retry_retrieve, retry_invoke_llm_with_context, END
    judgement = END 
    return judgement

3. κ·Έλž˜ν”„ 생성

from langgraph.graph import StateGraph

workflow = StateGraph(AgentState)

4. λ…Έλ“œ μΆ”κ°€

workflow.add_node("extract_actions", extract_actions)
workflow.add_node("retrieve", retrieve)
workflow.add_node("invoke_llm", invoke_llm)
workflow.add_node("invoke_llm_with_context", invoke_llm_with_context)
workflow.add_node("check_groundedness", check_groundedness)

5. 엣지 (μ—°κ²°) μ •μ˜

workflow.add_conditional_edges(
    "extract_actions",
    is_exist_actions,
    {
        "is_exist_actions": "retrieve",
        "is_not_exist_actions": "invoke_llm",
    }
)
workflow.add_conditional_edges(
    "retrieve",
    is_exist_docs,
    {
        "is_exist_docs": "invoke_llm_with_context",
        "is_not_exist_docs": "invoke_llm",
    }
)
workflow.add_edge("invoke_llm_with_context", "check_groundedness")
workflow.add_edge("invoke_llm", END)
workflow.add_conditional_edges(
    "check_groundedness",
    judgement,
    {
        "retry_retrieve": "retrieve",
        "retry_invoke_llm_with_context": "invoke_llm_with_context",
        END: END
    }
)
  • 쑰건뢀 엣지λ₯Ό μ‚¬μš©ν•˜μ—¬ 동적인 흐름 μ œμ–΄κ°€ κ°€λŠ₯

6. μ‹œμž‘μ  μ„€μ •

workflow.set_entry_point("extract_actions")

7. κ·Έλž˜ν”„ 컴파일

app = workflow.compile()





βœ… μ•‘ν‹°λΉ„ν‹° λ‹€μ΄μ–΄κ·Έλž¨





βœ… μ‹€ν–‰κ²°κ³Ό

app.invoke(AgentState(question="λ‚΄ 질문"))

profile
μ„œλΉ„μŠ€ 핡심 κ°€μΉ˜λ₯Ό μ΄ν•΄ν•˜κ³ , 지속적인 κ°œμ„ μ„ μ΄λ„λŠ” μ—”μ§€λ‹ˆμ–΄(λ₯Ό 지ν–₯함)

0개의 λŒ“κΈ€

κ΄€λ ¨ μ±„μš© 정보