DMLP (Deep Multi Layer Perceptron)
컨볼루션 신경망(CNN; Convolutional Neural Network)
컨볼루션 (Convolution)
보폭(Stride)
패딩(Padding)
풀링(Pooling)
import torch
import torch.nn as nn
from .utils import load_state_dict_from_url
from typing import Any
__all__ = ['AlexNet', 'alexnet']
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
class AlexNet(nn.Module):
def __init__(self, num_classes: int = 1000) -> None:
super(AlexNet, self).__init__()
self.features = nn.Sequential(
#Conv1
#input channel : 3 , output channel : 64, kernel_size : 11, stride : 4, padding : 2
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True), # inplace=True 하면, inplace 연산을 수행함, inplace 연산은 결과값을 새로운 변수에 값을 저장하는 대신 기존의 데이터를 대체하는것을 의미
#Max Pool1
nn.MaxPool2d(kernel_size=3, stride=2),
#Conv2
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
#Max Pool2
nn.MaxPool2d(kernel_size=3, stride=2),
#Conv3
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
##Conv4
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
#Conv5
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
#Max Pool3
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
#드롭아웃
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
#특징 추출 부분
x = self.features(x)
x = self.avgpool(x)
#output shape : (batch size * 256(channel), 6, 6)
#Flatten
x = torch.flatten(x, 1)
#output shape (batch_size, 256 * 6* 6)
#분류 분류
x = self.classifier(x)
return x
def alexnet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> AlexNet:
r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
model = AlexNet(**kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls['alexnet'],
progress=progress)
model.load_state_dict(state_dict)
return model
import tensorflow as tf
def AlexNet(
input_shape=None,
weights=None,
classes=1000,
classifier_activation='softmax'):
model = tf.keras.Sequential([
#특징 추출 부분
#Conv 1
tf.keras.layers.Conv2D(filters=96,
kernel_size=(11, 11),
strides=4,
padding="valid",
activation=tf.keras.activations.relu,
input_shape=input_shape),
#Max Pool 1
tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="valid"),
tf.keras.layers.BatchNormalization(),
#Conv 2
tf.keras.layers.Conv2D(filters=256,
kernel_size=(5, 5),
strides=1,
padding="same",
activation=tf.keras.activations.relu),
#Max Pool 2
tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same"),
tf.keras.layers.BatchNormalization(),
#Conv 3
tf.keras.layers.Conv2D(filters=384,
kernel_size=(3, 3),
strides=1,
padding="same",
activation=tf.keras.activations.relu),
#Conv 4
tf.keras.layers.Conv2D(filters=384,
kernel_size=(3, 3),
strides=1,
padding="same",
activation=tf.keras.activations.relu),
#Conv 5
tf.keras.layers.Conv2D(filters=256,
kernel_size=(3, 3),
strides=1,
padding="same",
activation=tf.keras.activations.relu),
#Max Pool 3
tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
#분류 층 부분
#Fully connected layer 1
tf.keras.layers.Dense(units=4096,
activation=tf.keras.activations.relu),
tf.keras.layers.Dropout(rate=0.2),
#Fully connected layer 2
tf.keras.layers.Dense(units=4096,
activation=tf.keras.activations.relu),
tf.keras.layers.Dropout(rate=0.2),
#Fully connected layer 3
tf.keras.layers.Dense(units=classes,
activation=tf.keras.activations.softmax)
])
return model