백준 - 10844

아따맘마·2020년 12월 30일
0

알고리즘 - 백준

목록 보기
14/53

문제

45656이란 수를 보자.

이 수는 인접한 모든 자리수의 차이가 1이 난다. 이런 수를 계단 수라고 한다.

세준이는 수의 길이가 N인 계단 수가 몇 개 있는지 궁금해졌다.

N이 주어질 때, 길이가 N인 계단 수가 총 몇 개 있는지 구하는 프로그램을 작성하시오. (0으로 시작하는 수는 없다.)

입력

첫째 줄에 N이 주어진다. N은 1보다 크거나 같고, 100보다 작거나 같은 자연수이다.

출력

첫째 줄에 정답을 1,000,000,000으로 나눈 나머지를 출력한다.

풀이

일단 N = 1인 경우
1, 2, 3, 4, 5, 6, 7, 8, 9
N = 2인 경우
10, 12, 21, 23, 32, ...
N = 3인 경우
101, 121, 210, ...

첫번째 자리가 0인 경우는 없으므로 그 경우는 제외해야 한다.
그리고 일의자리 숫자가 1 ~ 8인 경우의 점화식은
dp[N][i] = dp[N-1][i-1] + dp[N-1][i+1] 이다.
일의자리에 붙는 숫자의 경우는 그 전 길이의 숫자의 일의자리 숫자에서 +1, -1일수밖에 없기 때문이다.
그럼 일의자리가 0 또는 9일경우는 어떨까?
0일때는 +1, 9일때는 -1인 경우밖에 없으므로
dp[N][0] = dp[N-1][1]
dp[N][9] = dp[N-1][8]
일 수밖에 없다.

코드

#include <iostream>
using namespace std;

long dp[101][10];
#define MOD 1000000000;

int main()
{
	int n;
	int count;

	cin >> n;
	count = 0;
	for (int i = 0; i <= 9; i++)
		dp[1][i] = (i == 0) ? 0 : 1;
	for (int i = 2; i <= n; i++)
	{
		for (int j = 0; j <= 9; j++)
		{
			if (j == 0)
			{
				dp[i][j] = dp[i - 1][1] % MOD;
			}
			else if (j == 9)
			{
				dp[i][j] = dp[i - 1][8] % MOD;
			}
			else
				dp[i][j] = (dp[i - 1][j - 1] + dp[i - 1][j + 1]) % MOD;
		}
	}
	for (int j = 0; j <= 9; j++)
		count = (count + dp[n][j]) % MOD;
	printf("%ld ", count);
}
profile
늦게 출발했지만 꾸준히 달려서 도착지점에 무사히 도달하자

0개의 댓글