리 군, 리 대수 정리

haeryong·2024년 1월 10일
0

1. so(3)

1.1 회전 행렬 R과의 관계

exponential maps

so(3), axis angle인 ϕ\phi는 axis uu와 회전 크기 angle θ\theta의 곱으로,
Rodrigues 공식에 따르면
R=exp([ϕ]×)=exp(θ[u]×)=I+sin(θ)[u]×+(1cos(θ))[u]×2R=exp([\phi]_\times)=exp(\theta[u]_\times)=I+sin(\theta)[u]_\times+(1-cos(\theta))[u]^2_\times

where [v]×=(0v3v2v30v1v2v10)[v]_\times=\begin{pmatrix}0&-v_3&v_2\\v_3&0&-v_1\\-v_2&v_1&0\end{pmatrix}

logarithmic maps

θ=arccos((tr(R)1)/2)\theta=arccos((tr(R)-1)/2)
u=(RRT)/(2sin(θ))u=(R-R^T)^{\lor}/(2sin(\theta))

vector rotation

x=Rxx'=Rx

rotation composition

RAC=RABRBCR_{AC}=R_{AB}R_{BC}

spherical linear interpolation

R(t)=R(0)(R(0)TR(1))t=R(0)(I+sin(tΔθ)[u]×+(1cos(tΔθ))[u]×2)R(t)=R(0)(R(0)^TR(1))^t=R(0)(I+sin(t\Delta\theta)[u]_\times+(1-cos(t\Delta\theta))[u]^2_\times)

Right/Left Jacobian of SO(3)

Jr(ϕ)=R{ϕ}ϕ=I1cosϕϕ2[ϕ]×+ϕsinϕϕ3[ϕ]×2J_r(\phi)=\frac{\partial R\{\phi\}}{\partial \phi}=I-\frac{1-cos||\phi||}{||\phi||^2}[\phi]_\times+\frac{||\phi||-sin||\phi||}{||\phi||^3}[\phi]^2_\times
Jr1(ϕ)=I+12[ϕ]×+(1ϕ21+cosϕ2ϕsinϕ)[ϕ]×2J_r^{-1}(\phi)=I+\frac{1}{2}[\phi]_\times+(\frac{1}{||\phi||^2}-\frac{1+cos||\phi||}{2||\phi||sin||\phi||})[\phi]^2_\times

Jr(ϕ)=Jl(ϕ)R3×3J_r(\phi)=J_l(-\phi)\in R^{3\times3}

examples of usage of Jacobians of SO(3)

R{ϕ+δϕ}R{ϕ}R{Jr(ϕ)δϕ}R\{\phi+\delta \phi\}\approx R\{\phi\}R\{J_r(\phi)\delta \phi\}

R{ϕ}R{δϕ}R{ϕ+Jr1(ϕ)δϕ}R\{\phi\}R\{\delta \phi\} \approx R\{\phi+J_r^{-1}(\phi)\delta \phi\}

Jacobian wrt rotation vector

R{ϕ}xδϕ=R{ϕ}[x]×Jr(ϕ)=[R{ϕ}x]×Jl(ϕ)\frac{\partial R\{\phi\}x}{\partial \delta\phi}=-R\{\phi\}[x]_\times J_r(\phi)=-[R\{\phi\}x]_\times J_l(\phi)

perturbation

(Rx)φ=[Rx]×\frac{\partial(Rx)}{\partial\varphi}=-[Rx]_\times

1-2 유닛 쿼터니언 q와의 관계

exponential maps

q=Exp(ϕ)=exp(ϕ/2)=[cos(ϕ/2)usin(ϕ/2)]q=Exp(\phi)=exp(\phi/2)=\begin{bmatrix}cos(\phi/2)\\u*sin(\phi/2)\end{bmatrix}

logarithmic maps

θ=2arctan(qv,qw)\theta=2arctan(||q_v||, q_w)
u=qv/qvu=q_v/||q_v||

vector rotation

x=qxq=[q]L[q]Rxx'=q\otimes x\otimes q^*=[q]_L[q^*]_Rx

where [q]L=(qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqw),[q]_L=\begin{pmatrix}q_w&-q_x&-q_y&-q_z\\q_x&q_w&-q_z&q_y\\q_y&q_z&q_w&-q_x\\q_z&-q_y&q_x&q_w\end{pmatrix},

[q]R=(qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqw)[q]_R=\begin{pmatrix}q_w&-q_x&-q_y&-q_z\\q_x&q_w&q_z&-q_y\\q_y&-q_z&q_w&q_x\\q_z&q_y&-q_x&q_w\end{pmatrix}

rotation composition

qAC=qABqBCq_{AC}=q_{AB}\otimes q_{BC}

where pq=(pwqwpvTqvpwqv+qwpv+pv×qv)p\otimes q=\begin{pmatrix}p_wq_w-p_v^Tq_v\\p_wq_v+q_wp_v+p_v\times q_v\end{pmatrix}

spherical linear interpolation

Δθ=arccos(q(0)Tq(1))\Delta\theta=arccos(q(0)^Tq(1))

q(t)=q(0)sin((1t)Δθ)sin(Δθ)+q(1)sin(tΔθ)sin(Δθ)q(t)=q(0)\frac{sin((1-t)\Delta\theta)}{sin(\Delta\theta)}+q(1)\frac{sin(t\Delta\theta)}{sin(\Delta\theta)}

Jacobian wrt quaternion

(qxq)q=2(qwx+qv×xqvTxI3+qvxTxqvTqw[x]×)R3×4\frac{\partial (q\otimes x\otimes q^*)}{\partial q}=2\begin{pmatrix}q_wx+q_v\times x&|&q_v^TxI_3+q_vx^T-xq_v^T-q_w[x]_\times\end{pmatrix}\in R^{3\times4}

2. se(3)

T=(Rt0T1)R4×4T=\begin{pmatrix}R&t\\0^T&1\end{pmatrix}\in R^{4\times4}

ξ=(ρϕ)R6\xi=\begin{pmatrix}\rho\\\phi\end{pmatrix}\in R^6

exponential maps

exp([ξ]×)=(exp([ϕ]×)Jρ0T1)=Texp([\xi]_\times)=\begin{pmatrix}exp([\phi]_\times)&J\rho\\0^T&1\end{pmatrix}=T

where J(ϕ)=sin(θ)θI+(1sin(θ)θ)uuT+1cos(θ)θ[u]×J(\phi)=\frac{sin(\theta)}{\theta}I+(1-\frac{sin(\theta)}{\theta})uu^T+\frac{1-cos(\theta)}{\theta}[u]_\times

logarithmic maps

ρ=J1t,ϕ=ln(R)\rho=J^{-1}t,\quad\phi=ln(R)^\lor

Right/Left Jacobian of SE(3)

Jr(ξ)=T{ξ}ξ=(Jr(ϕ)Qr(ξ)03×3Jr(ϕ))R6×6\mathcal{J}_r(\xi)=\frac{\partial T\{\xi\}}{\partial \xi}=\begin{pmatrix}J_r(\phi)&Q_r(\xi)\\0_{3\times3}&J_r(\phi)\end{pmatrix}\in R^{6\times6}

where Qr(ξ)=12[ρ]×+(θsin(θ)θ3)([ϕ]×[ρ]×+[ρ]×[ϕ]×[ϕ]×[ρ]×[ϕ]×)(θ2+2cos(θ)22θ4)([ϕ]×2[ρ]×+[ρ]×[ϕ]×23[ϕ]×[ρ]×[ϕ]×)+(2θ3sin(θ)+θcos(θ)2θ5)([ϕ]×[ρ]×[ϕ]×2+[ϕ]×2[ρ]×[ϕ]×)Q_r(\xi)=-\frac{1}{2}[\rho]_\times+(\frac{\theta-sin(\theta)}{\theta^3})([\phi]_\times[\rho]_\times+[\rho]_\times[\phi]_\times-[\phi]_\times[\rho]_\times[\phi]_\times) - (\frac{\theta^2+2cos(\theta)-2}{2\theta^4})([\phi]_\times^2[\rho]_\times+[\rho]_\times[\phi]^2_\times-3[\phi]_\times[\rho]_\times[\phi]_\times)+(\frac{2\theta-3sin(\theta)+\theta cos(\theta)}{2\theta^5})([\phi]_\times[\rho]_\times[\phi]^2_\times+[\phi]^2_\times[\rho]_\times[\phi]_\times)

where (θ=ϕ)(\theta=||\phi||)

Jr1(ξ)I6×6+12([ϕ]×[ρ]×03×3[ϕ]×)\mathcal{J}_r^{-1}(\xi) \approx I_{6\times6}+\frac{1}{2}\begin{pmatrix}[\phi]_\times&[\rho]_\times\\0_{3\times3}&[\phi]_\times\end{pmatrix}

examples of usage of Jacobians of SE(3)

T{ξ+δξ}T{ξ}T{Jr(ξ)δξ}T\{\xi+\delta \xi \}\approx T\{\xi\}T\{\mathcal{J}_r(\xi) \delta \xi \}
T{ξ}T{δξ}T{ξ+Jr1(ξ)δξ}T\{\xi\}T\{\delta \xi\}\approx T\{\xi + \mathcal{J}_r^{-1}(\xi)\delta \xi \}

perturbation

(Tp)δξ=(I3[Rp+t]×0T0T)R4×6\frac{\partial(Tp)}{\partial\delta\xi}=\begin{pmatrix}I_3&-[Rp+t]_\times\\0^T&0^T\end{pmatrix}\in R^{4\times6}

0개의 댓글