목차
Discrete Probability Distribution counts occurrences that have countable or finite outcomes.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# For reproducibility
torch.manual_seed(1)
<torch._C.Generator at 0x105eccfb0>
Convert numbers to probabilities with softmax.
z = torch.FloatTensor([1, 2, 3])
PyTorch has a softmax
function.
hypothesis = F.softmax(z, dim=0)
print(hypothesis)
tensor([0.0900, 0.2447, 0.6652])
Since they are probabilities, they should add up to 1. Let's do a sanity check.
hypothesis.sum()
tensor(1.)
For multi-class classification, we use the cross entropy loss.
where is the predicted probability and is the correct probability (0 or 1).
z = torch.rand(3, 5, requires_grad=True)
hypothesis = F.softmax(z, dim=1)
print(hypothesis)
tensor([[0.2645, 0.1639, 0.1855, 0.2585, 0.1277],
[0.2430, 0.1624, 0.2322, 0.1930, 0.1694],
[0.2226, 0.1986, 0.2326, 0.1594, 0.1868]], grad_fn=<SoftmaxBackward>)
y = torch.randint(5, (3,)).long() # long타입의 텐서로 변환!
print(y)
tensor([0, 2, 1])
y_one_hot = torch.zeros_like(hypothesis)
y_one_hot.scatter_(1, y.unsqueeze(1), 1)
# _(underscore)가 붙어있는 것은 In-place operation(덮어쓰기 연산)
# dim=1에 대해서 수행을 하며, (3x1)텐서를 가지는 y.unsqueeze(1)이 알려주는 위치에 숫자 1을 넣어라.
tensor([[1., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])
# 참고: unsqueeze 결과는 다음과 같다.
print(y.unsqueeze(1))
tensor([[0],
[2],
[1]])
cost = (y_one_hot * -torch.log(hypothesis)).sum(dim=1).mean()
print(cost)
tensor(1.4689, grad_fn=<MeanBackward1>)
torch.nn.functional
PyTorch has F.log_softmax()
function.
# Low level
torch.log(F.softmax(z, dim=1))
tensor([[-1.3301, -1.8084, -1.6846, -1.3530, -2.0584],
[-1.4147, -1.8174, -1.4602, -1.6450, -1.7758],
[-1.5025, -1.6165, -1.4586, -1.8360, -1.6776]], grad_fn=<LogBackward>)
# High level
F.log_softmax(z, dim=1)
tensor([[-1.3301, -1.8084, -1.6846, -1.3530, -2.0584],
[-1.4147, -1.8174, -1.4602, -1.6450, -1.7758],
[-1.5025, -1.6165, -1.4586, -1.8360, -1.6776]],
grad_fn=<LogSoftmaxBackward>)
PyTorch also has F.nll_loss()
function that computes the negative loss likelihood.
# Low level
(y_one_hot * -torch.log(F.softmax(z, dim=1))).sum(dim=1).mean()
tensor(1.4689, grad_fn=<MeanBackward1>)
# High level
F.nll_loss(F.log_softmax(z, dim=1), y)
# NLL: Negative Log Likelihood
tensor(1.4689, grad_fn=<NllLossBackward>)
PyTorch also has F.cross_entropy
that combines F.log_softmax()
and F.nll_loss()
.
F.cross_entropy는 비용 함수에 소프트맥스 함수까지 포함하고 있음을 기억해야 구현 시 혼동하지 않는다!
F.cross_entropy(z, y)
tensor(1.4689, grad_fn=<NllLossBackward>)
x_train = [[1, 2, 1, 1],
[2, 1, 3, 2],
[3, 1, 3, 4],
[4, 1, 5, 5],
[1, 7, 5, 5],
[1, 2, 5, 6],
[1, 6, 6, 6],
[1, 7, 7, 7]]
y_train = [2, 2, 2, 1, 1, 1, 0, 0]
x_train = torch.FloatTensor(x_train)
y_train = torch.LongTensor(y_train)
# 모델 초기화
W = torch.zeros((4, 3), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# optimizer 설정
optimizer = optim.SGD([W, b], lr=0.1)
nb_epochs = 1000
for epoch in range(nb_epochs + 1):
# Cost 계산 (1)
hypothesis = F.softmax(x_train.matmul(W) + b, dim=1) # or .mm or @
y_one_hot = torch.zeros_like(hypothesis)
y_one_hot.scatter_(1, y_train.unsqueeze(1), 1)
cost = (y_one_hot * -torch.log(F.softmax(hypothesis, dim=1))).sum(dim=1).mean()
# cost로 H(x) 개선
optimizer.zero_grad()
cost.backward()
optimizer.step()
# 100번마다 로그 출력
if epoch % 100 == 0:
print('Epoch {:4d}/{} Cost: {:.6f}'.format(
epoch, nb_epochs, cost.item()
))
Epoch 0/1000 Cost: 1.098612
Epoch 100/1000 Cost: 0.901535
Epoch 200/1000 Cost: 0.839114
Epoch 300/1000 Cost: 0.807826
Epoch 400/1000 Cost: 0.788472
Epoch 500/1000 Cost: 0.774822
Epoch 600/1000 Cost: 0.764449
Epoch 700/1000 Cost: 0.756191
Epoch 800/1000 Cost: 0.749398
Epoch 900/1000 Cost: 0.743671
Epoch 1000/1000 Cost: 0.738749
F.cross_entropy
# 모델 초기화
W = torch.zeros((4, 3), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# optimizer 설정
optimizer = optim.SGD([W, b], lr=0.1)
nb_epochs = 1000
for epoch in range(nb_epochs + 1):
# Cost 계산 (2)
z = x_train.matmul(W) + b # or .mm or @
cost = F.cross_entropy(z, y_train)
# cost로 H(x) 개선
optimizer.zero_grad()
cost.backward()
optimizer.step()
# 100번마다 로그 출력
if epoch % 100 == 0:
print('Epoch {:4d}/{} Cost: {:.6f}'.format(
epoch, nb_epochs, cost.item()
))
Epoch 0/1000 Cost: 1.098612
Epoch 100/1000 Cost: 0.761050
Epoch 200/1000 Cost: 0.689991
Epoch 300/1000 Cost: 0.643229
Epoch 400/1000 Cost: 0.604117
Epoch 500/1000 Cost: 0.568255
Epoch 600/1000 Cost: 0.533922
Epoch 700/1000 Cost: 0.500291
Epoch 800/1000 Cost: 0.466908
Epoch 900/1000 Cost: 0.433507
Epoch 1000/1000 Cost: 0.399962
nn.Module
class SoftmaxClassifierModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(4, 3) # Output이 3!
def forward(self, x):
return self.linear(x)
model = SoftmaxClassifierModel()
Let's try another new dataset.
# optimizer 설정
optimizer = optim.SGD(model.parameters(), lr=0.1)
nb_epochs = 1000
for epoch in range(nb_epochs + 1):
# H(x) 계산
prediction = model(x_train)
# cost 계산
cost = F.cross_entropy(prediction, y_train)
# cost로 H(x) 개선
optimizer.zero_grad()
cost.backward()
optimizer.step()
# 20번마다 로그 출력
if epoch % 100 == 0:
print('Epoch {:4d}/{} Cost: {:.6f}'.format(
epoch, nb_epochs, cost.item()
))
Epoch 0/1000 Cost: 1.849513
Epoch 100/1000 Cost: 0.689894
Epoch 200/1000 Cost: 0.609259
Epoch 300/1000 Cost: 0.551218
Epoch 400/1000 Cost: 0.500141
Epoch 500/1000 Cost: 0.451947
Epoch 600/1000 Cost: 0.405051
Epoch 700/1000 Cost: 0.358733
Epoch 800/1000 Cost: 0.312912
Epoch 900/1000 Cost: 0.269521
Epoch 1000/1000 Cost: 0.241922