[Generative model]

시크릿죠죠·2023년 4월 10일
0

Computer Vision

목록 보기
1/4
post-thumbnail

출처 : https://www.youtube.com/watch?v=Q3HU2vEhD5Y

20강 내용 정리

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples:

  • Classification
  • regression
  • object detection
  • semantic segmentation
  • image captioning, etc

👍 : 효율적, 대체로 성능 좋음

👎 : data labeling 데이터 커지면 불리

Unsupervised Learning

( includes Generative model )

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples:

  • Clustering (e.g. K-Means)
  • dimensionality reduction (pca)
    • Finding low dim subspace that captures the structure of the data w.o labels.
  • feature learning (autoencoder)
  • density estimation, etc

Discriminative vs Generative Learning

Discriminative Model

Learn a probability distribution p(y|x)

  • All images are forced to output pdf of labels

  • possible labels for each input ”compete” for probability mass. (전체 적분값은 1로 고정)

  • no competition between images

  • Application

    • Assign labels to data
    • Feature learning (supervised)
  • 👎 : image가 unreasonable 하다는 판단을 못함

Generative Model

Learn a probability distribution p(x)

  • Outputs how probable(likely) was that image (3-legged dog …) 얼마나 상식적이냐, 일반적이냐
  • input (infinite space ) —> likelihood 값을 assign
  • has a deep understanding on visual world
  • All possible images compete.
  • Evaluation : perplexity
  • Application
    • Detect outliers - likelihood 낮은 data == outlier
    • Feature learning (unsupervised)
    • Sample to generate new data - model outputs distribution over images → image 분포로 부터 sampling 하면 image 생성할 수 있다
  • 👍 : capable to reject unreasonable inputs by assigning small likelihood(likelihood 낮은 4번째 이미지 같은 경우)
  • 👎 : 3-legged dog … data 속 stereotype을 그대로 학습

Conditional Generative Model

Learn p(x|y)

  • each label에 대해 image끼리 compete.
  • Application
    • Assign labels, while rejecting outliers!
    • Generate new data conditioned on input labels
  • 👍
    • 모든 label에 대해 density 가 낮다면 → 그 이미지를 reject한다 즉, 굳이 unreasonable input 에 대해서 classification을 수행하지 않음. (4번째 이미지)
    • 위의 두 Discriminative model + Generative model을 이용해서 만들 수 있다 !!

0개의 댓글