-
Proof
: P(A∪B)=P(A∪(B∩Ac))=P(A)+P(B∩Ac)
-
inclusion-exclusion 포함 배제의 원리
: P(A∪B)=P(A)+P(B)−P(A∩B)
equiv to P(A∩B)+P(B∩Ac)=P(B),
True! since A∩B,Ac∩B are disjoint, union is B.
-
P(A∪B∪C)
= P(A)+P(B)+P(C)
−P(A∩B)−P(A∩C)−P(B∩C)
+P(A∩B∩C)
-
P(A1∪A2∪...∪An)
=j=1∑nP(Aj)−i<j∑P(Ai∩Aj)+i<j<k∑P(Ai∩Aj∩Ak)...
+(−1)n+1×P(A1∩A2∩...∩An)