Lecture 3: Birthday Problem, Properties of Probability

피망이·2023년 10월 24일
0
post-thumbnail

Birthday Problem

  • In k people, let's find the probability that 2 have same birthdays.

    • Just for simplicity, exclude Feb 29th; assume other 265 days equally likely; assume independent of births.
  • If k > 365, prob. is 1.

    • ex. | o o o | o o | ... | o o | -> Jan 1th, Jan 2th, ... Dec 31th (pigeonhole principle)
  • Let k <= 365,

    P(no  match)=365  364  363  ...  (365k+1)365kP(no\; match) = \frac{365\; * 364\; * 363\; ... \;(365-k+1)}{365^k}
P(match)={50.7%,if  k=2397%,if  k=5099.999%,if  k=100P(match)= \begin{cases} 50.7\%, & {if\; k = 23} \\ 97\%, & {if\; k = 50} \\ 99.999\%, & {if\; k = 100} \\ \end{cases}
  • (k2)=k(k1)2\begin{pmatrix}k\\2\\ \end{pmatrix} = \frac{k(k-1)}{2}

  • (232)=23232=253\begin{pmatrix}23\\2\\ \end{pmatrix} = \frac{23 * 23}{2} = 253

Axioms

  • assume 0<=P(A)<=10 <= P(A) <= 1
  1. P(ϕ)=0,P(5)=1P(ϕ)=0, P(5)=1

  2. P(n=1An)=j=0kP(An)P(\displaystyle⋃^{∞}_{n=1} An)=\displaystyle\sum^{k}_{j=0}P(An) if A1, A2, ... are disjoint (non-overlap)

    : It means that it's just sum of the prob!

  • Properties
  1. P(Ac)=1P(A)P(A^c) = 1 - P(A)

    • Proof

      : 1=P(S)=P(AAc)=P(A)+P(Ac)1 = P(S) = P(A \cup A^c) = P(A) + P(A^c) since AAc=ϕA \cap A^c = ϕ

  2. If ABA \subseteq B, then P(A)P(B)P(A) \subseteq P(B)

    • Proof

      : B=A(BAc)B = A \cup (B \cap A^c), disjoint P(B)=P(A)+P(BAc)>=P(A)P(B) = P(A) + P(B \cap A^c) >= P(A)

  3. P(AB)=P(A)+P(B)P(AB)P(A \cup B) = P(A) + P(B) - P(A \cap B) disjointification

    • Proof

      : P(AB)=P(A(BAc))=P(A)+P(BAc)P(A \cup B) = P(A \cup (B \cap A^c)) = P(A) + P(B \cap A^c)

    • inclusion-exclusion 포함 배제의 원리

      : P(AB)=P(A)+P(B)P(AB)P(A \cup B) = P(A) + P(B) - P(A \cap B)

      equiv to P(AB)+P(BAc)=P(B)P(A \cap B) + P(B \cap A^c) = P(B),

      True! since AB,AcBA \cap B, A^c \cap B are disjoint, union is BB.

    • P(ABC)P(A \cup B \cup C)

      = P(A)+P(B)+P(C)P(A) + P(B) + P(C)

      P(AB)P(AC)P(BC)- P(A \cap B) - P(A \cap C) - P(B \cap C)

      +P(ABC)+ P(A \cap B \cap C)

    • P(A1A2  ...  An)P(A_1 \cup A_2 \cup\; ... \; \cup A_n)

      =j=1nP(Aj)i<jP(AiAj)+i<j<kP(AiAjAk)  ...  = \displaystyle \sum^{n}_{j=1}P(Aj) - \displaystyle \sum_{i < j}P(A_i \cap A_j) + \displaystyle \sum_{i < j < k}P(A_i \cap A_j \cap A_k) \; ...\;

      +(1)n+1×P(A1A2  ...  An)+(-1)^{n+1} \times P(A_1 \cap A_2 \cap \; ... \; \cap A_n)

deMontmort's Problem

  • In 1713, matching problem

    • 카드가 놓인 위치와 카드에 쓰인 숫자가 일치할 확률?
  • n cardo, labeled 1, 2, ..., n. Let AjA_j be the event "jth card matches"

    • P(Aj)=1nP(A_j) = \frac{1}{n}, since all positions equally likely for card labeled j

    • P(A1A2)=(n2)!n!=1n(n1)=(n2)P(A_1 \cap A_2) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)} = \begin{pmatrix}n\\2\\ \end{pmatrix}

    • P(A1A2  ...  An)P(A_1 \cup A_2 \cup\; ... \; \cup A_n)

      =n×1n(n2)!n!×1n(n1)+n(n1)(n2)3×1n(n1)(n2)...= n \times \frac{1}{n} - \frac{(n-2)!}{n!} \times \frac{1}{n(n-1)} + \frac{n(n-1)(n-2)}{3} \times \frac{1}{n(n-1)(n-2)}-...

      =112!+13!...+(1)n1n!= 1 - \frac{1}{2!} + \frac{1}{3!} - ... + (-1)^n \frac{1}{n!} -> Tayler's series

      11e\approx 1 - \frac{1}{e}


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글