Lecture 14: Location, Scale, and LOTUS

피망이·2023년 12월 11일
0
post-thumbnail

Properties of Normal Distribution

  • ZN(0,1)Z \sim N(0, 1)

  • CDF Φ\Phi

  • E(Z)=0E(Z) = 0

  • Var(Z)=E(Z2)=1Var(Z) = E(Z^2) = 1

  • E(Z3)=0E(Z^3) = 0

    • z312πez2/2dz\int_{-∞}^{∞} z^3 \displaystyle \frac{1}{\sqrt{2 \pi}} e^{-z^2/2} dz (odd fn)
    • "3rd moment"
  • ZN(0,1)- Z \sim N(0, 1) (symmetry)

    • Let X=μ+σZX = \mu + \sigma Z, μR\mu \in \R (mean, location), σ>0\sigma > 0 (SD, scale)

    • Then we say XN(μ,σ2)X \sim N(\mu, \sigma^2)

      • E(X)=μE(X) = \mu

      • Var(μ+σZ)=σ2Var(Z)=σ2Var(\mu + \sigma Z) = \sigma^2 Var(Z) = \sigma^2

        • Var0Var \ge 0; Var(X)=0Var(X) = 0 if and only if P(X=a)=1P(X=a) = 1 for some aa

        • Var(X)=E((XEX)2)=EX2(EX)2Var(X) = E((X-EX)^2) = EX^2 - (EX)^2

        • Var(X+c)=Var(X)Var(X+c) = Var(X)

        • Var(cX)=c2Var(X)Var(cX) = c^2 Var(X)

        • Var(X+Y)Var(X)+Var(Y)Var(X+Y) \ne Var(X) + Var(Y) in general, not linear
          [equal if XX, YY are indep.]

        • Var(X+X)=Var(2X)=4Var(X)Var(X+X) = Var(2X) = 4Var(X)

      • Standardization(표준화) : Z=XμσZ = \displaystyle \frac{X-\mu}{\sigma}

        • Simple and Useful transformation!

        • 단위를 제거할 수 있으므로 무차원 변환하여 해석 가능

Find PDF of N(μ,σ2)N(\mu, \sigma^{2})

  • CDF :

    P(Xx)=P(Xμσxμσ)P(X \le x) = P(\displaystyle \frac{X-\mu}{\sigma} \le \displaystyle \frac{x-\mu}{\sigma})

    =Φ(xμσ)= \Phi (\displaystyle \frac{x-\mu}{\sigma})

  • Derivative of CDF : PDF!

    =1σ2πe(xμσ)2/2= \displaystyle \frac{1}{\sigma \sqrt{2 \pi}} e^{-(\displaystyle \frac{x-\mu}{\sigma})^2/2}

    • 합성함수 미분 : 1σΦ(xμσ)\displaystyle \frac{1}{\sigma} \Phi' (\displaystyle \frac{x-\mu}{\sigma})
  • X=μ+σ(Z)N(μ,σ2)-X = -\mu + \sigma(-Z) \sim N(-\mu, \sigma^2)

    • Later we'll show : if XjXjN(μj,σj2)X_j \sim X_j \sim N(\mu_j, \sigma_j^2) indep.
    • X1+X2N(μ1+μ2,σ12,σ22)X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2, \sigma_2^2)
    • X1X2N(μ1μ2,σ12,σ22)X_1 - X_2 \sim N(\mu_1 - \mu_2, \sigma_1^2, \sigma_2^2)
  • 68-95-99.7% Rule, XN(μ,σ2)X \sim N(\mu, \sigma^2)

    • P(Xμσ)0.68P(|X-\mu| \le \sigma) \approx 0.68
    • P(Xμ2σ)0.95P(|X-\mu| \le 2\sigma) \approx 0.95
    • P(Xμ3σ)0.99.7P(|X-\mu| \le 3\sigma) \approx 0.99.7

Calculations of Poission Distribution

Prob.P0P_0P1P_1P2P_2P3P_3...
XX00112233...
X2X^2020^2121^2222^2323^2...
  • E(X)=xxP(X=x)E(X) = \sum_{x} x P(X = x)

  • E(X2)=xx2P(X=x)E(X^2) = \sum_{x} x^2 P(X = x)

  • XPois(λ)X \sim Pois(\lambda)

    • E(X)=λE(X) = \lambda

    • E(X2)=k=0k2eλλkk!E(X^2) = \displaystyle \sum_{k = 0}^{∞} \displaystyle \frac{k^2 e^{-\lambda} \lambda^k}{k!}

      • k=0λkk!=eλ\displaystyle \sum_{k=0}^{∞} \displaystyle \frac{\lambda^k}{k!} = e^{\lambda}

      • λk=1kλk1k!=λeλ\lambda \displaystyle \sum_{k=1}^{∞} \displaystyle \frac{k \lambda^{k-1}}{k!} = \lambda e^{\lambda} (Derivative)

      • k=1kλkk!=λeλ\displaystyle \sum_{k=1}^{∞} \displaystyle \frac{k \lambda^{k}}{k!} = \lambda e^{\lambda}

      • k=0k2λk1k!=λeλ+eλ=eλ(λ+1)\displaystyle \sum_{k=0}^{∞} \displaystyle \frac{k^2 \lambda^{k-1}}{k!} = \lambda e^{\lambda} + e^{\lambda} = e^{\lambda}(\lambda+1) (Derivative again)

    • E(X2)=eλeλλ(λ+1)=λ2+λE(X^2) = e^{-\lambda} e^{\lambda} \lambda (\lambda+1) = \lambda^2 + \lambda

    • Var(X)=λ2+λλ2=λVar(X) = \lambda^2 + \lambda - \lambda^2 = \lambda

      • 평균과 분산이 같다!

Find Var(X)Var(X), XBin(n,p)X \sim Bin(n, p)

  • X=I1+...+InX = I_1 + ... + I_n, IjI_j i.i.d.Bern(p)\sim i.i.d. Bern(p)

    • X2=I12+...In2+2I1I2+2I1I3+...2In1InX^2 = I_1^2 + ... I_n^2 + 2 I_1 I_2 + 2 I_1 I_3 + ... 2 I_{n-1}I_{n}

    • E(X2)=nE(I12)+2(n2)E(I1I2)E(X^2) = nE(I_1^2) + 2 \begin{pmatrix}n\\2\\ \end{pmatrix} E(I_1 I_2) [indicator of succession both trials 1, 2]

      =np+n(n1)p2=np+n2p2np2= np + n(n-1)p^2 = np + n^2 p^2 - np^2

      Var(X)=npnp2=np(1p)=npq\Rightarrow Var(X) = np - np^2 = np(1-p) = npq, q=1pq=1-p

Prove LOTUS for discrete sample space

  • Show E(g(X))=xg(x)P(X=x)E(g(X)) = \displaystyle \sum_{x} g(x) P(X=x)

  • xg(x)P(X=x)\displaystyle \sum_{x} g(x) P(X=x) [grouped] =sSg(X(s))P({s})= \displaystyle \sum_{s \in S} g(X(s)) P(\{s\}) [ungrouped] (Pebble World)

    • xS:X(s)=xg(X(s))P({s})\displaystyle \sum_{x} \displaystyle \sum_{S: X(s) = x} g(X(s)) P(\{s\}) [Definitely]

      =xg(x)S:X(s)=xP({s})= \displaystyle \sum_{x} g(x) \displaystyle \sum_{S: X(s) = x} P(\{s\})

      =xg(x)P(X=x)= \displaystyle \sum_{x} g(x) P(X=x) [Sum of the pebbles mass]


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글