Lecture 15: Midterm Review

피망이·2023년 12월 13일
0
post-thumbnail

Coupon colletor(toy collector)

  • n toy types, equally likeyly, Find expected time TT (i.e. # toys) until have complete set.

    • n 가지 장난감을 모아야 전체를 모은다고 할 때, 장난감 전부를 모으는 데까지 걸리는 시간 T(뽑아야 하는 장난감 수)의 기댓값을 구하시오.

      • T=T1+T2+...+TnT = T_1 + T_2 + ... + T_n
      • T1T_1 = (time until 1st new toy) = 1
      • T2T_2 = (additional time until 2nd new toy)
      • T3T_3 = (... 3rd)
    • T1T_1 = 1, T21Geom(n1n)T_2 - 1 \sim Geom(\displaystyle \frac{n-1}{n}), ...

      • T2T_2 is probability of new one that would not be the same as T1T_1 item.
    • Tj1Geom(n(j1)n)T_j - 1 \sim Geom(\displaystyle \frac{n-(j-1)}{n})

    • E(T)=E(T1)+...+E(Tn)E(T) = E(T_1) + ... + E(T_n)

      • At Geometry distribution with 1(1st term), E(X)=1+qp=1pE(X) = 1+ \displaystyle \frac{q}{p} = \displaystyle \frac{1}{p}
    • E(T)=1+nn1+nn2+...+n1=n(1+12+13+...)E(T) = 1 + \displaystyle \frac{n}{n-1} + \displaystyle \frac{n}{n-2} + ... +\displaystyle \frac{n}{1} = n(1 + \displaystyle \frac{1}{2} + \displaystyle \frac{1}{3} + ...)

      nlogn\approx n log n for large n

Universality

  • F(x0)=13F(x_0) = \displaystyle \frac{1}{3}

    P(F(X)13)P(F(X) \le \displaystyle \frac{1}{3})

    =P(Xx0)= P(X \le x_0)

    =F(x0)=13= F(x_0) = \displaystyle \frac{1}{3}, F(X)Unif(0,1)F(X) \sim Unif(0, 1)

  • Logistic distribution

    F(x)=ex1+exF(x) = \displaystyle \frac{e^x}{1 + e^x}

    UUnif(0,1)U \sim Unif(0, 1),

    F1(U)=logU1UF^{-1}(U) = log \displaystyle \frac{U}{1-U} is logistic.

Symmetry

  • Let XX, YY, ZZ be i.i.d. positive r.v.s.

    • Find E(XX+Y+Z)=E(XX+Y+Z)=E(ZX+Y+Z)E(\displaystyle \frac{X}{X+Y+Z}) = E(\frac{X}{X+Y+Z}) = E(\frac{Z}{X+Y+Z}) (symmetry)

      • E(XX+Y+Z)+E(XX+Y+Z)+E(ZX+Y+Z)E(\displaystyle \frac{X}{X+Y+Z}) + E(\frac{X}{X+Y+Z}) + E(\frac{Z}{X+Y+Z}) (linearity)

        =E(X+Y+ZX+Y+Z)=1= E(\displaystyle \frac{X+Y+Z}{X+Y+Z}) = 1

        E(XX+Y+Z)=13\Rightarrow E(\displaystyle \frac{X}{X+Y+Z}) = \frac{1}{3}

LOTUS

  • UUnif(0,1)U \sim Unif(0, 1), X=u2X=u^2, Y=eXY=e^{X}, Find E(Y)E(Y) as an integral.

    • E(Y)=01exf(x)dxE(Y) = \int_{0}^{1} e^{x} f(x) dx, f(x)f(x) is PDF of XX

      • CDF: P(U2x)=P(Ux)=xP(U^2 \le x) = P(U \le \sqrt{x}) = \sqrt{x} if 0<x<10 < x < 1

      • f(x)=12x1/2f(x) = \displaystyle \frac{1}{2} x^{-1/2}, x(0,1)x \in (0, 1)

    • Better way: E(Y)=01eu2duE(Y) = \int_{0}^{1} e^{u^2} du

Practice

  • XBin(n,p)X \sim Bin(n, p), find distribution of n-X.

    • PMF: P(nX=k)=P(X=nk)=(nnk)pnkqk=(nk)qkpnkP(n-X=k) = P(X=n-k) = \begin{pmatrix}n\\n-k\\ \end{pmatrix} p^{n-k} q^{k} = \begin{pmatrix}n\\k\\ \end{pmatrix} q^{k} p^{n-k}

    • Story: nXBin(n,q)n-X \sim Bin(n, q), by swapping "success" and "failure"

Poisson distribution

  • Example: # emails I get in time tt is Pois(λt)Pois(\lambda t)

    • Find PDF(or CDF) of TT, time of 1st email.
  • P(T>t)=P(Nt=0)P(T > t) = P(N_t = 0) with NtN_t = (# emails in [0, tt])

    • eλt(λt)0(0)!=eλte^{-\lambda t} (\lambda t)^0 (0)! = e^{-\lambda t}

    • CDF is 1eλt1- e^{-\lambda t}, t>0t > 0


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글