-
rate(속도) parameter λ
-
X∼Expo(λ) has PDF: λe−λx, x>0 (0 otherwise)
- valid ∫0∞λe−λxdx=1
-
CDF: F(x)=∫0xλe−λtdt=1−eλx, $ x> 0$.
-
Let Y=λX, then Y∼Expo(1)
- since P(Y≤y)=P(X≤λy)=1−e−y
-
Let Y∼Expo(1), find E(Y), Var(Y)
-
E(Y)=∫0∞ye−ydy=(−ye−y)∣∣∣∣∣0∞+∫0∞e−ydy=0+(−e−y)∣∣∣∣∣0∞=1
- u=y, dv=e−ydy → du=dy, v=e−y
-
Var(Y)=E(Y2)−(EY)2=∫0∞y2e−ydy−1=2−1=1
- u=y2, then 2∗∫0∞ye−ydy.
-
So X=λY has E(X)=λ1, Var(X)=λ21