Lecture 17: Moment Generating Functions

피망이·2023년 12월 15일
0
post-thumbnail

Intuition of Memoryless Property

  • E(TT>20)>E(T)E(T | T > 20) > E(T)

    • 20대 이상의 기대 수명(T)은 무작위적인 기대 수명에 비해 큰 것이 사실이다.
    • 모든 사람의 기대 수명이 같지 않고 다 가변성이 있다면 이는 의미가 있다.
  • If memoryless, we would have E(TT>20)=20+E(T)E(T | T > 20) = 20 + E(T)

    • 인간에게는 그다지 유용하지 않으나 화학, 물리학 분야에서는 꽤 의미가 있다.
    • 시간이 지나도 decay되지 않는 속성을 가지는 것들에 대하여 적용될 수 있다.

Theorem

  • XX is a positive continuous r.v. with memoryless property,

    • then XExpo(λ)X \sim Expo(\lambda) for same λ\lambda
  • Proof.

    • Let FF be the CDF of XX, G(x)=P(X>x)=1F(x)G(x) = P(X > x) = 1 - F(x) = 1 - 지수함수's CDF

      • memoryless property is G(s+t)=G(s)G(t)G(s+t) = G(s)G(t), Solve for GG

      • s=tG(2t)=G(t)2s = t \Rightarrow G(2t) = G(t)^2, G(3t)=G(t)2,...,G(kt)=G(t)kG(3t) = G(t)^2, ... , G(kt) = G(t)^k

      • G(t2)=G(t)1/2,G(t3)=G(t)1/3,...  ,G(tk)=G(t)1/kG(\frac{t}{2}) = G(t)^{1/2}, G(\frac{t}{3}) = G(t)^{1/3}, ... \;, G(\frac{t}{k}) = G(t)^{1/k}

      • G(mnt)=G(t)m/nG(\frac{m}{n} t) = G(t)^{m/n}, So G(xt)=G(t)xG(xt) = G(t)^x for all real x>0x > 0

      • t=1G(x)=G(1)x=exlnG(1)=exλ=eλxt=1 \Rightarrow G(x) = G(1)^x = e^{x lnG(1)} = e^{x -\lambda} = e^{-\lambda x}

        • 0<G(1)<1lnG(1)0 < G(1) < 1 → lnG(1) is negative→ λ-\lambda !

Moment Generating Function(MGF)

  • Defn.

    • A r.v. XX has MGF M(t)=E(etx)M(t) = E(e^{tx}), as a function of tt,

      • if this is finite on some (a,a)(-a, a), a>0a>0.
    • Why moment "generating"?

      • E(etx)=E(0xntnn!)=0E(xn)tnn!E(e^{tx}) = E(\displaystyle \sum_{0}^{∞} \frac{x^n t^n}{n!}) = \displaystyle \sum_{0}^{∞} \frac{E(x^n) t^n}{n!} by taylor series.

      • E(xn)E(x^n) : nth moment

  • Why is MGF important?

    • Let XX have MGF M(t)M(t)
    1. The nth moment, E(Xn)E(X^n), is coef of tnn!\displaystyle \frac{t^n}{n!} in Taylor series of M,

      • i.e. M(n)(0)=E(Xn)M^{(n)}(0) = E(X^n) nth derivative.
    2. MGF determines the distribution, i.e., if XX, YY have same MGF,

      • then they have same CDF.
    3. If XX has MDF MXM_X, YY has MDF MYM_Y, XX indep. YY, then

      • MGF of X+YX+Y is E(et(X+Y)=E(etX)E(etY)=MX(t)MY(t)E(e^{t(X+Y)} = E(e^{tX})E(e^{tY}) = M_X(t) M_Y(t) by indep.
  • Examples.

    • XBern(p)X \sim Bern(p), M(t)=E(etx)=pet+qM(t) = E(e^{tx}) = pe^{t} + q, q=1pq = 1-p

    • XBin(n,p)M(t)=(pet+q)nX \sim Bin(n, p) \Rightarrow M(t) = (pe^{t} + q)^n

    • ZN(0,1)M(t)=12πetzz2/2dzZ \sim N(0, 1) \Rightarrow M(t) = \displaystyle \frac{1}{\sqrt{2 \pi}} \int_{-∞}^{∞} e^{tz - z^2/2} dz

      et2/22πe12(zt)2dz=et2/22π    2π=et2/2\displaystyle \frac{e^{t^2/2}}{\sqrt{2 \pi}} \int_{-∞}^{∞} e^{\frac{1}{2}(z-t)^2} dz = \displaystyle \frac{e^{t^2/2}}{\sqrt{2 \pi}} \; • \; \sqrt{2 \pi} = e^{t^2/2}

Laplace Rule of Succession

  • 내일 해가 뜰 확률은 얼마인가?

    • Given pp ⇒ We assume conditional indep. X1,X2,...i.i.d.X_1, X_2, ... i.i.d. to Bern(p)Bern(p)
    • But actually, we don't know about pp.
  • pp unknown, Bayesian: treat pp as a r.v.

  • Let pUnif(0,1)p \sim Unif(0, 1) (사전 확률 prior). Let Sn=X1+...+XnS_n = X_1 + ... + X_n

    • So SnpBin(n,p)S_n | p \sim Bin(n, p), pUnif(0,1)p \sim Unif(0, 1)
    • Find pSnp | S_n (사후 확률 posterior), and P(Xn+1=1Sn=n)P(X_{n+1} = 1 | S_n = n)
      • 지난 n일 동안 태양이 떴을 때, 내일 해가 뜰 확률
  • f(pSn=k)=P(Sn=kp)f(p)P(Sn=k)f(p | S_n = k) = \displaystyle \frac{P(S_n = k | p) f(p)}{P(S_n = k)}

    • f(p)f(p) is prior 1, P(Sn=k)P(S_n = k) does not depend on pp

      • P(Sn=k)=01P(Sn=kp)f(p)dpP(S_n = k) = \int_{0}^{1} P(S_n = k | p) f(p) dp
    • f(pSn=k)pk(1p)nkf(p | S_n = k) ∝ p^k (1-p)^{n-k}

      • f(pSn=n)=(n+1)pnf(p | S_n = n) = (n+1)p^n
    • P(Xn+1=1Sn=n)=01(n+1)  p  pndp=n+1n+2P(X_{n+1} = 1 | S_n = n) = \int_{0}^{1} (n+1) \; p \; p^n dp = \displaystyle \frac{n+1}{n+2}


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글