Lecture 19: Joint, Conditional, and Marginal Distributions

피망이·2023년 12월 19일
0
post-thumbnail

Joint, Conditional, Marginal Dist.

  • joint CDF

    • F(x,y)=P(Xx,Yy)F(x, y) = P(X \le x, Y \le y)
  • joint PDF

    • continuous case:

      f(x,y)=xyF(x,y)f(x, y) = \displaystyle \frac{\partial}{\partial x \partial y} F(x, y)

      P((x,y)A)=Af(x,y)dxdyP((x, y) \in A) = \iint_{A} f(x, y) dx dy in the any region of A

      cf. f(x,y)dxdy=1\iint_{-∞}^{∞} f(x, y) dx dy = 1

  • marginal PDF of XX

    • f(x,y)dy\int_{-∞}^{∞} f(x, y) dy
  • conditional PDF of YXY|X is

    • fYX(yx)=fX,Y(x,y)fX(x)=fXY(xy)fY(y)fX(x)f_{Y|X} (y|x) = \displaystyle \frac{f_{X, Y}(x, y)}{f_X(x)} = \frac{f_{X|Y}(x|y) f_{Y}(y)}{f_{X}(x)} (Bayes rule)
  • XX, YY indep. if

    • fX,Y(x,y)=fX(x)fY(y)f_{X, Y}(x, y) = f_{X}(x) f_{Y}(y), f(x,y)={1π,x2+y21y21x20,otherwisef(x, y) = \begin{cases} \displaystyle \frac{1}{\pi}, {x^2 + y^2 \le 1 → y^2 \le 1-x^2} \\ 0, {otherwise} \\ \end{cases}

    • ex) Unif in disc x2+y21x^2 + y^2 \le 1

      • fX(x)=1x21x22π1x2f_{X}(x) = \displaystyle \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \displaystyle \frac{2}{\pi} \sqrt{1-x^2}, 1x1-1 \le x \le 1

      • fYX(yx)=1π2π1x2f_{Y|X}(y|x) = \displaystyle \frac{\frac{1}{\pi}}{\frac{2}{\pi} \sqrt{1-x^2}} if 1x2y1x2-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}

      • YXUnif(1x2,1x2)Y|X \sim Unif(-\sqrt{1-x^2}, \sqrt{1-x^2})
        [which means YX=xUnif(1x2,1x2)Y|X=x \sim Unif(-\sqrt{1-x^2}, \sqrt{1-x^2}) ]

      • fX,Y(x,y)fX(x)fY(y)f_{X, Y}(x, y) \ne f_{X}(x) f_{Y}(y)
        so not independent.

2-D LOTUS

  • Let (XX, YY) have joint PDF f(x,y)f(x, y), and let g(x,y)g(x, y) be a real valued fn of xx, yy.

    • Then E(g(X,Y))=g(x,y)f(x,y)dxdyE(g(X, Y)) = \int_{-∞}^{∞} \int_{-∞}^{∞} g(x, y) f(x, y) dx dy
  • Thm: If XX, YY are indep. them E(XY)=E(X)E(Y)E(XY) = E(X)E(Y)

    -"Indep. implies uncorrelated"

  • Proof(continuous case)

    • E(XY)=xyfX(x)fY(y)dxdyE(XY) = \int_{-∞}^{∞} \int_{-∞}^{∞} xy f_X(x) f_Y(y) dx dy

      yfY(y)xfX(x)dxdy=(EX)(EY)\int_{-∞}^{∞} yf_{Y}(y) \int_{-∞}^{∞} xf_X(x) dx dy = (EX)(EY)

  • Example: XX, YY i.i.d Unif(0,1)\sim Unif(0, 1), find EXYE|X-Y|

    • LOTUS: 0101xydxdy\int_{0}^{1} \int_{0}^{1} |x-y| dx dy

      =x>y(xy)dxdy+xy(yx)dxdy=201y1(xy)dxdy= \iint_{x>y} (x-y) dxdy + \iint_{x \le y} (y-x) dxdy = 2 \int_{0}^{1} \int_{y}^{1} (x-y) dxdy

      =201(x22yx1y)dy=13= 2 \int_{0}^{1} (\displaystyle \frac{x^2}{2} - yx \biggr|_{1}^{y}) dy = \frac{1}{3}

  • Let M=max(X,Y)M = max(X, Y), L=min(X,Y)L = min(X, Y)

    • XY=ML|X-Y| = M-L, E(ML)=13=E(M)E(L)=13E(M-L) = \displaystyle \frac{1}{3} = E(M)-E(L) = \frac{1}{3}

    • E(M+L)=E(X+Y)=E(M)+E(L)=1E(M+L) = E(X+Y) = E(M) + E(L) = 1

      E(M)=23\Rightarrow E(M) = \displaystyle \frac{2}{3}, E(L)=13E(L) = \displaystyle \frac{1}{3}

  • Example: Chicken-egg problem

    • NPois(λ)N \sim Pois(\lambda) eggs, each hatches with prob. pp indep.

      • Let XX = # that hatch, so XNBin(N,p)X|N \sim Bin(N, p)
      • Let YY = # don't hatch, so X+Y=NX+Y = N
      • Find joint PMF of XX, YY.
    • P(X=i,Y=j)=n=0P(X=i,Y=jN=n)P(N=n)P(X=i, Y=j) = \displaystyle \sum_{n=0}^{∞} P(X=i, Y=j | N=n) P(N=n)

      =P(X=i,Y=jN=i+j)P(N=i+j)= P(X=i, Y=j | N=i+j) P(N=i+j)

      =P(X=iN=i+j)P(N=i+j)= P(X=i | N=i+j) P(N=i+j) → it's just Binomial! (x+y = n)

      cf. P(X=3,Y=5N=10)=0P(X=3, Y=5 | N=10) = 0, P(X=3,Y=5N=2)=0P(X=3, Y=5 | N=2) = 0

    • P(X=iN=i+j)P(N=i+j)P(X=i | N=i+j) P(N=i+j)

      =(i+j)!i!j!piqjeλλi+j(i+j)!= \displaystyle \frac{(i+j)!}{i! j!} p^{i} q^{j} \frac{e^{-\lambda} \lambda^{i+j}}{(i+j)!}, p+q=1p+q = 1

      =(eλp(λp)ii!)(eλq(λq)jj!)= (\displaystyle e^{-\lambda p}\frac{(\lambda p)^i}{i!}) (\displaystyle e^{-\lambda q}\frac{(\lambda q)^j}{j!})

      X,Y\Rightarrow X, Y are indep., XPois(λp)X \sim Pois(\lambda p), YPois(λq)Y \sim Pois(\lambda q)

    • 푸아송 분포에 대한 무작위적인 확률은 독립성을 갖게 만든다.


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글