Lecture 20: Multinomial and Cauchy

피망이·2023년 12월 26일
0
post-thumbnail

Continue to Lecture 19

  • Distance between 2 i.i.d. variables

    • Ex) Find EZ1Z2E|Z_1 - Z_2|, with Z1Z_1, Z2Z_2 i.i.d.N(0,1)\sim i.i.d. N(0, 1)

      • Z1Z2Z_1 - Z_2 : i.i.d. standard normal
    • Thm) XN(μ1,σ12)X \sim N(\mu_1, \sigma_1^{2}), YN(μ2,σ22)Y \sim N(\mu_2, \sigma_2^{2}), indep. then,

      • X+YN(μ1+μ2,σ12+σ22)X+Y \sim N(\mu_1+\mu_2, \sigma_1^{2}+\sigma_2^{2})
    • Proof) Use MGFs: MGF of X+YX+Y is

      • eμ1t+12σ12t2eμ2t+12σ22t2=e(μ1+μ2)t+12(σ12+σ22)t2e^{\displaystyle \mu_1t + \frac{1}{2} \sigma_1^{2} t^{2}} e^{\displaystyle \mu_2t + \displaystyle \frac{1}{2} \sigma_2^{2} t^{2}} = e^{\displaystyle (\mu_1+\mu_2)t + \displaystyle \frac{1}{2} (\sigma_1^{2}+\sigma_2^{2}) t^{2}}

      : MGF of N(μ1+μ2,σ12+σ22)N(\mu_1+\mu_2, \sigma_1^{2}+\sigma_2^{2})

    • Note Z1Z2N(0,2)Z_1-Z_2 \sim N(0, 2), 22 is just scale(척도).

      • EZ1Z2=E2ZE|Z_1 - Z_2| = E|\sqrt{2} Z|, ZN(0,2)Z \sim N(0, 2) : It's just 1D LOTUS

        =2EZ= \sqrt{2}E|Z| = 2z12πez2/2dz=12π\sqrt{2} \int_{-∞}^{∞} |z| \displaystyle \frac{1}{\sqrt{2 \pi}} e^{-z^2/2} dz = \displaystyle \frac{1}{\sqrt{2 \pi}} (even function)

Multinomial

  • Defn/Story of Mult(n,p)Mult(n, \vec{p})

    • p=(p1,...pk)\vec{p} = (p_1, ... p_k) prob. vector pj0p_j \ge 0, jpj=1\sum_{j} p_j = 1

      • kk parameters of prob. for one case!
    • XMult(n,p)\vec{X} \sim Mult(n, \vec{p}), X=(X1,...Xk)\vec{X} = (X_1, ... X_k)

      • if have n objects, indep. putting into k categories, pjp_j = P(categoty  j)P(categoty \; j),

      • XjX_j = # objects in catagory jj

  • Joint PMF P(X1=n1,...Xn=nk)=n!n1!n2!...nk!p1n1p2n2...pknkP(X_1 = n_1, ... X_n = n_k) = \displaystyle \frac{n!}{n_1! n_2! ... n_k!} p_1^{n_1} p_2^{n_2} ... p_k^{n_k}

    • if n1+...+nk=1n_1 + ... +n_k = 1 (0 otherwise)
  • XMultk(n,p)\vec{X} \sim Mult_k(n, \vec{p}), Find a Marginal dist.(주변 분포) of XjX_j

    • Then, XjBin(n,pj)X_j \sim Bin(n, p_j)

    • E(Xj)=npjE(X_j) = np_j, Var(Xj)=npj(1pj)Var(X_j) = np_j(1-p_j)

Lumping Property(일괄 처리)

  • X=(X1,X2,...X10)Mult(n,(p1,...,p10))\vec{X} = (X_1, X_2, ... X_10) \sim Mult(n, (p_1, ..., p_10))

    • Let Y=(X1,X2,X3+...+X10)\vec{Y} = (X_1, X_2, X_3 + ... +X_10),

      • Then YMult(n,(p1,p2,p3+...+p10)\vec{Y} \sim Mult(n, (p_1, p_2, p_3 + ... + p_10)

Conditional Probability

  • XMult(n,p)\vec{X} \sim Mult(n, \vec{p}), Then given X1=n1X_1 = n_1

    • (X2,...Xk)Multk1(nn1,(p2,...pk))(X_2, ... X_k) \sim Mult_{k-1} (n-n_1, (p_2', ... p_k'))

    • with p2=P(being  in  category  2    not  in  category  1)p_2' = P(being \; in \; category \; 2 \; | \; not \; in \; category \; 1)

      =p21p1+p2p2+...+pk= \displaystyle \frac{p_2}{1-p_1} + \frac{p_2}{p_2 + ... + p_k}, pj=pjp2+...+pkp_j' = \displaystyle \frac{p_j}{p_2 + ... + p_k}

Cauchy interview Problem

  • The Cauchy is dist. of ratio T=XYT = \displaystyle \frac{X}{Y} with XX, YY i.i.d. N(0,1)\sim N(0, 1).

    • Find PDF of T. (This is evel!)
  • P(XYt)=P(XYt)P(\displaystyle \frac{X}{Y} \le t) = P(\displaystyle \frac{X}{|Y|} \le t) (Symmetry of N(0,1)N(0, 1))

    F(t)=P(XtY)=12πey2/2ty12πex2/2dxdyF(t) = P(X \le t|Y|) = \displaystyle \frac{1}{\sqrt{2 \pi}} \int_{-∞}^{∞} e^{-y^2/2} \int_{-∞}^{t|y|} \displaystyle \frac{1}{\sqrt{2 \pi}} e^{-x^2/2} dx dy

    =12πey2/2Φ(ty)dy=212π0ey2/2Φ(ty)dy= \displaystyle \frac{1}{\sqrt{2 \pi}} \int_{-∞}^{∞} e^{-y^2/2} \Phi (t|y|) dy = 2 • \displaystyle \sqrt{\frac{1}{2 \pi}} \int_{0}^{∞} e^{-y^2/2} \Phi (t|y|) dy (even function)

    • Then, what you gonna do next? → Find PDf means you get the above is CDF.
      • So, let's derivative of CDF ⇒ There is PDF!
    • If there is "well-behaved" function, sㅁhoud derivative first before integral
  • PDF: F(t)=2π0yey2/212πet2y2/2dy=1π0ye(1+t2)2y2/2dyF'(t) = \displaystyle \sqrt{\frac{2}{\pi}} \int_{0}^{∞} ye^{-y^2/2} \displaystyle \sqrt{\frac{1}{2 \pi}} e^{-t^2y^2/2} dy = \frac{1}{\pi} \int_{0}^{∞} y e^{-(1+t^2)^2 y^2/2} dy

    • Let's say u=(1+t2)y2/2u = (1+t^2)y^2/2, du=(1+t2)ydydu = (1+t^2) ydy

    =1π(1+t2)= \displaystyle \frac{1}{\pi (1+t^2)}

  • P(XtY)=P(XtYY=y)ϕ(y)dyP(X \le t|Y|) = \int_{-∞}^{∞} P(X \le t|Y| | Y=y) \phi (y) dy

    • ϕ\phi is N(0,1)N(0, 1) PDF

    =Φ(ty)ϕ(y)dy= \int_{-∞}^{∞} \Phi (t|y|) \phi(y) dy


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글