Lecture 21: Covariance and Correlation

피망이·2024년 1월 10일
0
post-thumbnail

Covariance

  • Defn. : need 2 variables

    • Cov(X,Y)=E((XEX)(YEY))=E(XY)E(X)E(Y)Cov(X, Y) = E((X-EX)(Y-EY)) = E(XY) - E(X)E(Y)
      • If X is bigger than EX, Y is also bigger than EY.
      • If X is smaller than EX, Y is also : like a + = +*+, -*-
      • Since linearlity, E(XY)E(X)E(Y)E(X)E(Y)+E(X)E(Y).E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y).
  • Properties

    1. Cov(X,Y)=Var(X)Cov(X, Y) = Var(X)

    2. Cov(X,Y)=Cov(Y,X)Cov(X, Y) = Cov(Y, X)

    3. Cov(X,c)=0Cov(X, c) = 0 if c is constant.

    4. Cov(cX,Y)=cCov(X,Y)=Cov(X,cY)Cov(cX, Y) = c Cov(X, Y) = Cov(X, cY)

    5. Cov(X,Y+Z)=Cov(X,Y)+Cov(X,Z)Cov(X, Y+Z) = Cov(X, Y) + Cov(X, Z)X(Y+Z)=XY+XZX(Y+Z) = XY + XZ

      • 4 & 5 : bilinearity
    6. Cov(X+Y,Z+W)=Cov(X,Z)+Cov(X,W)+Cov(Y,Z)+Cov(Y,W).Cov(X+Y, Z+W) = Cov(X, Z) + Cov(X, W) + Cov(Y, Z) + Cov(Y, W).
      Cov(i=1maiXi,j=1mbiYi=i,jaibiCov(Xi,Yj).Cov(\displaystyle \sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{m} b_i Y_i = \displaystyle \sum_{i, j} a_i b_i Cov(X_i, Y_j).
      : Combination of Random variables

    7. Var(X1+X2)=Var(X1)+Var(X2)+2Cov(X1,X2)Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2)
      : 합의 분산은 분산의 합 (독립이라면 공분산이 0, 공분산이 0인 경우에만!)

    8. Var(X1+...+Xn)=Var(X1)+...Var(Xn)+2i<jCov(Xi,Xj)Var(X_1 + ... + X_n) = Var(X_1) + ... Var(X_n) + 2 \displaystyle \sum_{i<j} Cov(X_i, X_j)

  • Thm.

    • IF XX, YY are indep., then theiy're uncorrelated, i.e., Cor(X,Y)=0Cor(X, Y) = 0

      • Converse(역) is false
    • e.g., ZN(0,1)Z \sim N(0, 1), X=ZX = Z, Y=Z2Y = Z^2

      • Cov(X,Y)=E(XY)E(X)E(Y)=E(Z3)E(Z)E(Z2)=0Cov(X, Y) = E(XY) - E(X)E(Y) = E(Z^3) - E(Z)E(Z^2) = 0
    • But very dependent : YY is a function of X, and YY determines magnitude of X.

      • Cov(X,Y)=0Cov(X, Y) = 0, but they did not independent!
      • Correlation : 선형 관계가 있어야만 상관성 증명 가능

Correlation

  • Defn.

    • Corr(X,Y)=Cov(X,Y)SD(X)SD(Y)=Cov(XEXSD(X),YEYSD(Y))Corr(X, Y) = \displaystyle \frac{Cov(X, Y)}{SD(X)SD(Y)} = Cov(\frac{X-EX}{SD(X)}, \frac{Y-EY}{SD(Y)})
      • After Standard Deviation(표준화), get Covariance
      • 표준화는 단위를 없애는 작업 : 무차원
  • Thm.

    • 1Corr(X,Y)1-1 \le Corr(X, Y) \le 1 (form of Couchy-Schwarz)
  • Proof.

    • WLOG(Without Loss Of Generality) assume XX, YY are standardized(0~1), let Corr(X,Y)=ρ.Corr(X, Y) = \rho.
    • Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)=2+2ρVar(X+Y) = Var(X) + Var(Y) + 2Cov(X, Y) = 2 + 2\rho
    • Var(XY)=Var(X)+Var(Y)2Cov(X,Y)=22ρVar(X-Y) = Var(X) + Var(Y) - 2Cov(X, Y) = 2 - 2\rho
      1ρ1-1 \le \rho \le 1
  • Ex. Cov in a Multinomial

    • (X1,...Xk)Mult(n,p)(X_1, ... X_k) \sim Mult(n, \vec{p}), Find Cov(Xi,Xj)Cov(X_i, X_j) for all i, j.
    1. If i=ji=j, Cov(Xi,Xj)=Var(Xi)=npi(1pi).Cov(X_i, X_j) = Var(X_i) = n p_i (1-p_i).
    2. Now let iji \ne j, Find Cov(Xi,Xj)=cCov(X_i, X_j) = c.
    • Var(X1+X2)=np1(1p1)+np2(1p2)+2cVar(X_1+X_2) = n p_1(1-p_1) + n p_2(1-p_2) + 2c
      =n(p1+p2)(1(p1+p2))= n(p_1 + p_2) (1-(p_1 + p_2))

      Cov(X1,X2)=np1p2\Rightarrow Cov(X_1, X_2) = -n p_1 p_2

    • General : Cov(Xi,Xj)=npipjCov(X_i, X_j) = -np_ip_j, for iji \ne j.

  • Ex. Cov in binomial

    • XBin(n,p)X \sim Bin(n, p), write as X=X1+...+XnX = X_1 + ... + X_n,

      {Xj  are  i.i.d.  Bern(p).Var  Xi=EXj2(EXj)2=pp2=p(1p)=pq\begin{cases} X_j \; are \; i.i.d. \; Bern(p).\\ Var \; X_i = EX_j^2 - (EX_j)^2 = p-p^2 = p(1-p) = pq \end{cases}

    • Let IAI_A be indicator r.v. of event A.

      • IA2=IAI_A^2 = I_A
      • IA3=IAI_A^3 = I_A
      • IAIB=IABI_A I_B = I_{A \cap B}

    Var(X)=npqVar(X) = npq since Cov(Xi,Xj)=0Cov(X_i, X_j) = 0 for iji \ne j.

  • Ex. Cov in Hypergeometric

    • XHGeom(w,b,n)X \sim HGeom(w, b, n)

      • X=X1+...XnX = X_1 + ... X_n, Xj={1,if  jth  ball  is  white0,otherwiseX_j = \begin{cases} 1, {if \; jth \; ball \; is \; white}\\ 0, {otherwise} \end{cases}
    • Symmetry, Var(X)=nVar(X1)+2(nk)Cov(X1,X2)Var(X) = nVar(X_1) + 2 \displaystyle {n \choose k}Cov(X_1, X_2)

      • equally likely
    • Cov(X1,X2)=E(X1X2)E(X1)E(X2)=ww+b(w1w+b1)(ww+b)2Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2) = \displaystyle \frac{w}{w+b} (\frac{w-1}{w+b-1}) - (\frac{w}{w+b})^2


profile
물리학 전공자의 프로그래밍 도전기

0개의 댓글